论文阅读《Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising》

本文提出了一种深度残差卷积神经网络(DnCNN)用于图像去噪,利用残差学习和批量归一化提高性能。DnCNN不仅适用于高斯去噪,还能处理未知噪声水平和多种去噪任务,如超分辨率和JPEG去块。实验显示了其高效和可实现性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

发表于 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017

PaperCode

Abstract:提出前馈去噪卷积神经网络(DnCNNs),将超深层次结构、学习算法和正则化方法的进展纳入图像去噪。具体来说,利用残差学习和批量归一化来加速训练过程以及提高去噪性能。与现有的判别去噪模型不同,该模型通常在一定的噪声水平下训练特定的加性高斯白噪声模型,DnCNN模型能够处理未知噪声水平下的高斯去噪(即盲高斯去噪)。利用残差学习策略,DnCNN隐式去除隐藏层中潜在的干净图像。这一特性促使训练单个DnCNN模型来处理一些一般的图像去噪任务,例如高斯去噪、单图像超分辨率和JPEG图像去块。实验表明,DnCNN模型不仅能在多种图像去噪任务中表现出较高的效率,而且还能通过GPU计算得到有效实现。

图像去噪的目标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhemgLee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值