Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
发表于 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 7, JULY 2017
Abstract:提出前馈去噪卷积神经网络(DnCNNs),将超深层次结构、学习算法和正则化方法的进展纳入图像去噪。具体来说,利用残差学习和批量归一化来加速训练过程以及提高去噪性能。与现有的判别去噪模型不同,该模型通常在一定的噪声水平下训练特定的加性高斯白噪声模型,DnCNN模型能够处理未知噪声水平下的高斯去噪(即盲高斯去噪)。利用残差学习策略,DnCNN隐式去除隐藏层中潜在的干净图像。这一特性促使训练单个DnCNN模型来处理一些一般的图像去噪任务,例如高斯去噪、单图像超分辨率和JPEG图像去块。实验表明,DnCNN模型不仅能在多种图像去噪任务中表现出较高的效率,而且还能通过GPU计算得到有效实现。
图像去噪的目标