b站小土堆pytorch学习记录—— P27-P29 完整的模型训练套路

该博客围绕PyTorch深度学习展开,介绍了定义模型、训练、测试及完整代码。主要功能包括加载CIFAR - 10数据集,创建自定义模型,执行训练和测试循环,用TensorBoard记录信息,保存模型参数。还讲解了.train()和.eval()方法对模型状态的设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义模型(放在model.py文件中)

import torch
from torch import nn

class Guodong(nn.Module):
    def __init__(self):
        super(Guodong,self).__init__()
        self.module = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.module(x)
        return x

if __name__ == '__main__':
    guodong = Guodong()
    input = torch.ones((64, 3, 32, 32))
    output = guodong(input)
    print(output.shape)

二、训练

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from model import *

dataset_train = torchvision.datasets.CIFAR10("dataset1", train=True, transform=torchvision.transforms.ToTensor(), download=True)
dataset_test = torchvision.datasets.CIFAR10("dataset1", train=False, transform=torchvision.transforms.ToTensor(),download=False)

dataset_train_size = len(dataset_train)
dataset_test_size = len(dataset_test)
print("训练集的数据长度为{}".format(dataset_train_size))
print("测试集的数据长度为{}".format(dataset_test_size))

train_dataloader = DataLoader(dataset_train, batch_size=64)
test_dataloader = DataLoader(dataset_test, batch_size=64)

# 创建网络模型
guodong = Guodong()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(guodong.parameters(), learning_rate)

# 设置训练网络的一些参数
total_train_step =0
total_test_step = 0
epoch = 10

for i in range(10):
    print("------第{}次训练开始------".format(i+1))

    # 训练开始
    for data in train_dataloader:
        imgs, target = data
        output = guodong(imgs)
        loss = loss_fn(output, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step+1
        if total_train_step % 100 == 0:
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))

运行结果:(部分)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到,随着训练次数的增加,loss整体上在不断变小

三、测试

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

writer = SummaryWriter("train_logs")

dataset_train = torchvision.datasets.CIFAR10("dataset1", train=True, transform=torchvision.transforms.ToTensor(), download=True)
dataset_test = torchvision.datasets.CIFAR10("dataset1", train=False, transform=torchvision.transforms.ToTensor(),download=False)

dataset_train_size = len(dataset_train)
dataset_test_size = len(dataset_test)
print("训练集的数据长度为{}".format(dataset_train_size))
print("测试集的数据长度为{}".format(dataset_test_size))

train_dataloader = DataLoader(dataset_train, batch_size=64)
test_dataloader = DataLoader(dataset_test, batch_size=64)

# 创建网络模型
guodong = Guodong()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(guodong.parameters(), learning_rate)

# 设置训练网络的一些参数
total_train_step =0
total_test_step = 0
epoch = 10

for i in range(10):
    print("------第{}次训练开始------".format(i+1))

    # 训练开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = guodong(imgs)
        loss = loss_fn(outputs, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step = total_train_step+1
        if total_train_step % 100 == 0:
            # print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = guodong(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的Loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)

writer.close()

运行结果:

在这里插入图片描述
打开tensorboard后,结果如下:

在这里插入图片描述

四、完整的训练和测试代码

主要功能:
加载和准备CIFAR-10数据集,以便训练和测试深度学习模型。
创建一个自定义的深度学习模型(Guodong),并定义损失函数和优化器。
执行训练循环和测试循环,通过反向传播优化模型参数,并评估模型在测试集上的性能。
使用TensorBoard记录训练过程中的损失和准确率等信息,以便后续分析和可视化。
保存训练后的模型参数到文件中,以便后续部署和使用。

此外

在深度学习中,通常使用**.train().eval()**这两个方法来设置模型的训练模式和评估模式。这两个方法通常用于 PyTorch 或 TensorFlow 等深度学习框架。

.train(): 这个方法将模型设置为训练模式。在训练模式下,模型会启用训练相关的功能,比如启用 dropout 或 batch normalization 层的运算,以及计算梯度用于参数更新。当调用该方法后,模型会处于可以接受输入数据并进行前向传播、反向传播的状态。

.eval(): 这个方法将模型设置为评估模式。在评估模式下,模型会关闭一些训练过程中的特殊操作,如 dropout 或 batch normalization 的自适应性,以确保在推理阶段的一致性。评估模式通常用于模型在验证集或测试集上的性能评估,以保证评估结果的稳定性和一致性。

通过在训练和评估阶段分别调用.train()和.eval()方法,可以确保模型在不同阶段有正确的行为表现,从而提高训练和评估的效果和可靠性。

import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import Guodong  # 导入自定义的模型类

# 创建TensorBoard的SummaryWriter,用于记录训练过程中的损失和准确率等信息
writer = SummaryWriter("train_logs")

# 加载CIFAR-10数据集
dataset_train = torchvision.datasets.CIFAR10("dataset1", train=True, transform=torchvision.transforms.ToTensor(), download=True)
dataset_test = torchvision.datasets.CIFAR10("dataset1", train=False, transform=torchvision.transforms.ToTensor(), download=False)

dataset_train_size = len(dataset_train)
dataset_test_size = len(dataset_test)
print("训练集的数据长度为{}".format(dataset_train_size))
print("测试集的数据长度为{}".format(dataset_test_size))

# 创建训练和测试数据加载器
train_dataloader = DataLoader(dataset_train, batch_size=64)
test_dataloader = DataLoader(dataset_test, batch_size=64)

# 创建网络模型实例
guodong = Guodong()

# 定义损失函数和优化器
loss_fn = nn.CrossEntropyLoss()
learning_rate = 1e-2
optimizer = torch.optim.SGD(guodong.parameters(), learning_rate)

# 设置训练网络的一些参数
total_train_step = 0
total_test_step = 0
epoch = 10

for i in range(10):
    print("------第{}次训练开始------".format(i + 1))

    guodong.train()

    # 训练开始
    for data in train_dataloader:
        imgs, targets = data
        outputs = guodong(imgs)
        loss = loss_fn(outputs, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step += 1
        if total_train_step % 100 == 0:
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试开始
    guodong.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            outputs = guodong(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss += loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy += accuracy

    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy / dataset_test_size))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    writer.add_scalar("test_accuracy", total_accuracy / dataset_test_size, total_test_step)

    # 保存模型
    torch.save(guodong.state_dict(), "guodong_{}.pth".format(i))
    print("模型已保存")

    total_test_step += 1

writer.close()

代码运行结果:

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云霄星乖乖的果冻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值