超分辨率常用的代码

这篇博客介绍了如何将tensor格式的图片转换为numpy数组,同时探讨了在图像处理中进行数据增强的方法,这对于超分辨率任务尤其关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将tensor格式的图片转换为numpy

def tensor2np(t): # CHW -> HWC, [0, 1] -> [0, 255]
    return (t[0]*255).cpu().clamp(0, 255).round().byte().permute(1, 2, 0).numpy()

数据增强

import os
from PIL import Image
import argparse
import shutil

parser = argparse.ArgumentParser(description="数据增强")
parser.add_argument("--input-path", type=str, default='./hhh', help="地址")
parser.add_argument("--out-path", type=str, default='./hh', help="地址")

opt=parser.parse_args()

pathlist=os.listdir(opt.input_path)

if not os.path.exists(opt.out_path):
    os.mkdir(opt.out_path)

##尺度缩放
scale = [1]
##旋转角度
angle = [0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值