机器学习 (南京大学周志华的《机器学习》和李航的《统计学习方法》)

本文深入探讨了机器学习的三种核心方法:监督学习、无监督学习和强化学习。监督学习用于预测未来事件,无监督学习旨在发现数据内在结构,而强化学习则专注于解决交互式问题。此外,还介绍了决策树、随机森林等十大经典算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习的三种不同方法:
一、监督学习(supervised learning)——对未来事件进行预测。使用有类标的数据构建数据模型。然后使用经训练得到的模型对未来的数据进行预测。
主要分为两类:
1.利用分类对类标进行预测
2.使用回归预测连续输出值
二、无监督学习(unsupervised learning)——发现数据本身潜在的结构。分为两类:
1.通过聚类发现数据的子群
2.数据压缩中的降维
三、强化学习(reinforecement learning)——解决交互式问题。构建一个系统,在与环境交互的过程中提高系统的性能。

四、基本术语
在这里插入图片描述

在这里插入图片描述

机器学习的十大经典算法
https://www.toutiao.com/i6610271910351602184/?tt_from=weixin&utm_campaign=client_share&wxshare_count=2&from=singlemessage&timestamp=1539183202&app=news_article&utm_source=weixin&iid=11612498513&utm_medium=toutiao_ios&group_id=6610271910351602184&pbid=6610741823151982087
一、决策树
二、随机森林算法
三、逻辑回归
四、SVM
五、朴素贝叶斯
六、k最邻近算法
七、k均值算法
八、Adaboost算法
九、神经网络
十、马尔可夫

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值