Background Segmentation算法之Vibe

vibe是一种像素级的前景检测算法,实时性高,内存占有率低,前景检测准确率高。只需要一帧就可以完成初始化。

一种背景提取算法至少要考虑三方面问题:

  1. 模型是什么,它如何工作的
  2. 模型如何初始化
  3. 模型如何随时间进行更新

下面从上述三点对Vibe算法进行描述:

模型是什么,它又是如何工作的

将背景提取看成是分类问题,根据所选颜色空间中的邻域对新像素值进行分类。
在这里插入图片描述
对每个像素建模,如图中像素 υ ( x ) \upsilon \left ( x \right ) υ(x),它的样本模型就是 M ( x ) = { υ 1 , υ 2 , . . . , υ n } M\left ( x\right )=\left \{\upsilon _{1},\upsilon _{2},...,\upsilon _{n}\right \} M(x)={

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值