【大模型部署实践-3】3个能在3090上跑起来的4bits量化Chat模型(baichuan2-13b、InternLM-20b、Yi-34b)

写在前面:操作环境

操作系统:win11专业版
GPU:GTX 3090 24G
CUDA:12.0
python: 3.8
PyTorch: 2.0.1(baichuan2必须)

一、baichuan2-13b-chat-4bits

模型下载

魔搭社区下载
先git clone仓库,然后手动下载bin文件

环境部署

  1. 这部分踩坑比较多,主要是各种库兼容性的问题,出现各种报错
  2. transformer需要4.33.1版本,高版本不能兼容,会出现No module named 'transformers_modules.Baichuan2-13B-Chat' transformers之类的错误。
  3. 需要下载bitsandbytes,由于项目所在环境为win11,尝试了下载bitsandbytes-windows并没有用。
  4. 找了一个改造过的仓库的release,对应版本需要bitsandbytes-0.41.1-py3-none-win_amd64(在https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels下载),低于该版本容易出现问题,如CUDA detection failedcannot import name 'Params4bit' from 'bitsandbytes.nn.modules'(由该解决方案启发)。
  5. 通过pip install xFormers==0.0.20消除警告并推理加速

一些参考:

运行Baichuan2-int4量化版本
"玩一玩"baichuan2
Baichuan2大模型启动时,所依赖的三方包版本都有哪些

代码运行

这部分下载的baichuan2的github仓库,用的cli-demo运行

二、InternLM-20b-chat-4bits

模型下载

魔搭社区下载量化后的参数,
先git clone仓库,然后手动下载bin文件

环境部署

用工具箱所以不需要配置

代码运行

基于transformer加载参数的文档写得有点问题,主要参考“仅需一块3090显卡,高效部署InternLM-20B模型”,使用LMDeploy相关命令转化模型参数、交互。

lmdeploy convert \
    --model-name internlm-chat \
    --model-path ./internlm-chat-20b-4bit \
    --model-format awq \
    --group-size 128 \
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aq_Seabiscuit

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值