简谈卷积—幽默笑话谈卷积
今天和大侠简单聊一聊卷积,话不多说,上货。
关于卷积,之前在大学时候学信号与系统的时候就感觉理解的不是很深刻,我于是心想一定要把卷积完全搞明白。经过一段时间的思考之后,有一些很有趣的体会和大家分享。据说卷积这种运算式物理学家发明的,在实际中用得不亦乐乎,而数学家却一直没有把运算的意义彻底搞明白。仔细品一下,还是有那么点滋味的。
下面先看一下剑桥大学的教科书对卷积的定义:
我们都知道这个公式,但是它有什么物理意义呢,平时我们用卷积做过很多事情,信号处理时,输出函数是输入函数和系统函数的卷积,在图像处理时,两组幅分辨率不同的图卷积之后得到的互相平滑的图像可以方便处理。卷积甚至可以用在考试作弊中,为了让照片同时像两个人,只要把两人的图像卷积处理即可,这就是一种平滑的过程,可是我们怎么才能真正把公式和实际建立起一种联系呢,也就是说,我们能不能从生活中找到一种很方便且具体的例子来表达公式的物理意义呢?
那下面咱们就来看一看详细的卷积本质以及物理意义的介绍。
一、来源
卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底