推荐系统_各个评价指标

本文介绍了推荐系统的评价指标,包括Hit、Recall、MRR、Precision、NDCG、MAP、ROC曲线和AUC。这些指标用于衡量算法的准确性和排序质量,例如NDCG考虑了推荐顺序,而ROC曲线和AUC则评估了算法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

‘Hit’

点击率预估问题
the number of users with a positive sample in the recommendation list.推荐列表中的正样本数量/总的推荐列表数量,该方法没有考虑推荐列表的顺序。

‘Recall’
Recall_ (also known as sensitivity) is the fraction of the total amount of relevant instances that were actually retrieved
是检索出的相关文档数和文档库中所有的相关文档数的比率

‘MRR’
MRR_ (also known as mean reciprocal rank) is a statistic measure for evaluating any process that produces a list of possible responses to a sample of queries, ordered by probability of correctness.
MRR_(也称为平均倒数排名)是一种统计量度,用于评估任何产生对查询样本的可能响应列表的过程,按正确概率排序。是一个国际上通用的对搜索算法进行评价的机制,即第一个结果匹配,分数为1,第二个匹配分数为0.5,第n个匹配分数为1/n,如果没有匹配的句子分数为0。最终的分数为所有得分之和。

‘Precision’
Precision_ (also called positive predictive value) is the fraction of relevant instances among the retrieved instances.
True Positive/(True Positive+False Positive)
真正样本/(真正样本+错正样本)的比例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值