UNeXt:基于MLP的快速医学图像分割网络

摘要:


近年来,UNet及其最新扩展(如TransUNet)一直是医学图像分割领域的主流方法。然而,这些方法参数量大、计算复杂度高且使用速度慢,因此无法有效地应用于需要快速图像分割的点护理场景中。为此,我们提出了UNeXt,这是一个基于卷积多层感知器(MLP)的图像分割网络。我们有效地设计了UNeXt,包括一个早期的卷积阶段和一个潜在阶段的MLP阶段。我们提出了一种标记化的MLP块,其中我们高效地标记和投影卷积特征,并使用MLP来建模表示。为了进一步提升性能,我们提出在将输入送入MLP时移动其通道,以便专注于学习局部依赖性。在潜在空间中使用标记化的MLP可以减少参数数量和计算复杂度,同时能够获得更好的表示来帮助分割。该网络还包括编码器和解码器各层级之间的跳跃连接。我们在多个医学图像分割数据集上测试了UNeXt,结果表明,与最先进的医学图像分割架构相比,我们的方法将参数数量减少了72倍,计算复杂度降低了68倍,推理速度提高了10倍,同时获得了更好的分割性能。代码可在https://github.com/jeya-maria-jose/UNeXt-pytorch获取。
概述:
UNeXt是一个创新的医学图像分割网络,旨在解决现有方法在计算效率和速度方面的不足。该网络结合了卷积神经网络(CNN)和多层感知器(MLP)的优点,通过设计一个包含早期卷积阶段和潜在MLP阶段的架构,实现了快速且准确的医学图像分割。
在UNeXt中,卷积阶段负责提取图像的基本特征,而MLP阶段则进一步处理这些特征以生成更高级的表示。为了优化MLP的性能,研究者们提出了一种标记化的MLP块,该块能够高效地标记和投影卷积特征,并通过MLP来建模这些特征的表示。此外,他们还提出在输入送入MLP时移动其通道,以学习更丰富的局部依赖性。
UNeXt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小小的土拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值