整数拆分
题目链接:力扣题目链接
难度:中等
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。
返回 你可以获得的最大乘积 。
示例 :
输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
思路
- 确定dp数组及下标含义
dp[i]:分拆数字i,可以得到的最大化乘积为dp[i]
dp[i]的定义将贯彻整个解体过程 - 确定递推公式
一个是j * (i - j) 直接相乘,一个是j * dp[i - j],相当于是拆分(i - j)
j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘,如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j}); - dp数组如何初始化
只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1
特别地,00 不是正整数,11 是最小的正整数,00 和 11 都不能拆分,因此dp[0]=dp[1] = 0 - 确定遍历顺序
先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。枚举j的时候,是从1开始的。i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。
动态规划代码
class Solution{
public int integerBreak(int n) {
//dp[i] 为正整数 i 拆分后的结果的最大乘积
int[] dp = new int [n+1];
dp[2] = 1;
for(int i =3 ; i <=n ;i++){
for(int j = 1;j<= i-j; j++){
// 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
//并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
//j 最大到 i-j,就不会用到 dp[0]与dp[1]
dp[i] = Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j])) ;
// j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
//而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
}
}
return dp[n];
}
}