算法学习:343.整数拆分

本文探讨了如何使用动态规划解决整数拆分问题,通过递推公式dp[i] = max(dp[i], (i-j)*j, dp[i-j]*j)找到正整数n的最佳拆分组合,以最大化乘积。关键步骤包括初始化dp[2]=1,遍历顺序从3开始,结合实例说明算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整数拆分

题目链接:力扣题目链接
难度:中等
给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。


返回 你可以获得的最大乘积 。


示例 :


输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

思路

  1. 确定dp数组及下标含义
    dp[i]:分拆数字i,可以得到的最大化乘积为dp[i]
    dp[i]的定义将贯彻整个解体过程
  2. 确定递推公式
    一个是j * (i - j) 直接相乘,一个是j * dp[i - j],相当于是拆分(i - j)
    j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘,如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});
  3. dp数组如何初始化
    只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1
    特别地,00 不是正整数,11 是最小的正整数,00 和 11 都不能拆分,因此dp[0]=dp[1] = 0
  4. 确定遍历顺序
    先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。枚举j的时候,是从1开始的。i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

动态规划代码

class Solution{
	 public int integerBreak(int n) {
	  	//dp[i] 为正整数 i 拆分后的结果的最大乘积
		int[] dp = new int [n+1];
		dp[2] = 1;
		for(int i =3 ; i <=n ;i++){
			for(int j = 1;j<= i-j; j++){
				// 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
				dp[i] = Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]))	;
				// j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
			}
		}
		return dp[n];
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

As_theWind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值