机械臂 2D图像 预测物体抓取位姿 方案

前提说明:我最终的目的是获取物体的抓取位置,这个要么通过2D的关键点检测来实现要么通过类似GraspNet来实现。

yolov11 旋转目标检测

在这里插入图片描述
在这里插入图片描述

Python:Select Interpreter
conda create -p E:\Anaconda3\envs\sjk python=3.9

数据标注

yolov11 关键点检测

在这里插入图片描述

在这里插入图片描述

数据增强小tips:
  SAM抠图->随机旋转缩放等数据增强方法->放置于噪声图片上
在这里插入图片描述
  2D的物体位姿检测仅适用于物体没有堆叠的情况,也就是平面上只有一个物体(如果物体很大的话,机械臂夹爪只能抓取一个物体的话,那2D的还是ok的, 如果要求更高一些,比如夹取堆叠的手机,一次只能夹取一个的话,那还是得高一个维度y)

yolo旋转目标检测+关键点检测

Yolov8obb_kpt,旋转框+关键点检测,有向目标检测,判断目标正方向
相关的工作目前不是很完善,只有这一个人的工作,目前还是倾向于先用yolo目标检测出结果,再在这个的基础上进行旋转和关键点检测

2D平面抓取

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GraspNet AnyGrasp

GraspNet
算法: 使用深度学习模型从图像中直接估计抓取位姿。
优点: 适用于复杂的场景,具有良好的泛化能力。
缺点: 需要大量的训练数据和计算资源。
AnyGrasp
算法: 深度学习网络用于预测物体的抓取姿态。
优点: 实时性较好,适合工业自动化应用。
缺点: 对训练数据和模型选择要求较高。

参考链接:使用YOLOv5进行物体检测,并通过GraspNet进行6D位姿估计
D435相机结合Yolo V8识别出目标物体,并转点云出抓取位姿

YOLO-6D-Pose 4年前
github源码
在这里插入图片描述
yolo-6d 7年前

yolo+GGCNN 2D平面物体位姿预测
GRCNN抓取网络学习1【Jacquard数据集等效制作】

参考文章

FANet:基于关键点的快速准确的机器人抓握检测
GR-ConvNet v2:用于机器人抓取的 实时多抓取检测网络
SE-ResUNet:一种新颖的机器人抓握检测方法
使用轻量级 CNN 模型进行机器人抓握检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值