Jetson Orin Nano(8G) 刷机
参考教程:Jetson Orin Nano Developer Kit系统刷机
新手入门Jetson开发第一关:学会刷机
1 在主机虚拟机ubuntu安装sdkmanager
sudo dpkg -i sdkmanager_1.9.3__xx_amd64.deb
sdkmanager
登录好英伟达账号后直接给我用USB转typeC数据线将jetson与主机连接即可,TargetHardWare显示型号即连接成功。
现在就能开始进行刷机任务,进入“STEP 1”之后,建议将“Host Machine”的安装选项取消掉(如图9),因为这部分会在Ubuntu主机上安装CUDA开发环境,除非您的系统上有装上NVIIDA的GPU卡,否则这些安装是没有任何作用,还会浪费很多时间去下载安装包与安装环境。
这里就按照图里的选就行了,然后continue
然后等待
第一个进度条到100%后下面的继续安装
然后中途会跳出这个,设定账号密码,我这里设定的是账号密码均是nvidia,然后点击Flash烧录即可
这里应该选择Manual手动,然后下面的Storage Device 应该选择NVME
这是没有刷机之前的版本
其实第一步应该是将J14 的9 10 引脚短接
J14 在风扇底下
这是使用SDK Mananger执行刷机时,所必须执行的步骤。在Jetson Nano(含2GB)、NX与Orin Nano等系列开发套件中,在“背部风扇下方”都有一组针脚(如下图左),其中右数第3/4针脚分别为“FC REC”与“GND”功能(如下图右上方),在关闭电源的状态下,使用一般条线将这两个脚位进行“短接”(如下图右下方)。
我这里应该选择第二个,要不然会一直刷机不成功。
按照提示进行解决。
只有这个NVIDIA Container Runtime没有装成功,应该不打紧
NVIDIA Jetson板子上安装nvidia docker需要注意的问题_nvidia-container-cli: initialization error: load l-CSDN博客
如果不安装docker去使用GPU的话这个装不装问题不大
安装jtop:
sudo apt update
sudo apt install python3
sudo apt install python3-pip
sudo pip3 install -U pip
sudo pip3 install jetson-stats
完蛋,刷机失败了
ubuntu虚拟机启动失败黑屏解决方案及原因
ubuntu虚拟机启动失败黑屏解决方案及原因
虚拟机Ubuntu系统突然打不开
df -h
sudo apt autoremove --purge snapd
主机可以ping同Ubuntu,但Ubuntu不能ping同主机解决方法
主机可以ping同Ubuntu,但Ubuntu不能ping同主机解决方法
我们右击win键,打开网络连接->高级网络设置->下拉找到windows防火墙->高级设置,然后在入站规则内下拉,找到“文件和打印机共享(回显请求-ipv4)”,将这两个启用即可。
jetson填坑-单独安装cuda,cudnn,tensorrt任意适用版本
jetson填坑-单独安装cuda,cudnn,tensorrt任意适用版本
sudo apt-get install cuda-toolkit-12.6
sudo vim ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.6/lib64
export PATH=$PATH:/usr/local/cuda-12.6/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.6
miniconda3安装
下载Miniconda3-py310_23.10.0-1-Linux-aarch64.sh
清华源下载地址
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-aarch64.sh
chmod +x Miniconda3-py310_23.10.0-1-Linux-aarch64.sh
./Miniconda3-latest-Linux-aarch64.sh
source ~/.bashrc
conda --version
## conda 换源
vim /home/nx/miniconda3/.condarc
## 注释原来的channels配置,添加下述配置。
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
## pip 换源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/
## 创建环境
conda create -n track python=3.10
conda activate track
## 设置默认启动环境
vim ~/.bashrc
conda activate track
source ~/.bashrc
ImportError: libcusparseLt.so.0: cannot open share object file: No such file or directory
需要安装 libcudasparseLt。使用这个链接:https://developer.nvidia.com/cusparselt-downloads
wget https://developer.download.nvidia.com/compute/cusparselt/0.7.1/local_installers/cusparselt-local-tegra-repo-ubuntu2204-0.7.1_1.0-1_arm64.deb
sudo dpkg -i cusparselt-local-tegra-repo-ubuntu2204-0.7.1_1.0-1_arm64.deb
sudo cp /var/cusparselt-local-tegra-repo-ubuntu2204-0.7.1/cusparselt-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install libcusparselt0 libcusparselt-dev
Jetson Orin Nano (8G) 算力
40TOPS
jetson torch torchvision 安装
在Jetson设备上安装PyTorch和Torchvision的完整指南
https://developer.nvidia.com/embedded/downloads#?search=torch
下载,然后安装对应的torch即可
安装torchvision
Jetson上的gpu版本torchvision没有现成的安装包,需要自行编译安装。首先下载对应版本的torchvision
# 安装工具链
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev
# 下载torchvision
git clone --branch v0.20.0 https://github.com/pytorch/vision torchvision
cd torchvision
export BUILD_VERSION=0.20.0 # v0.20.0 为torchvision版本
python3 setup.py install --user
编译速度是真慢,感觉至少编译了半个小时
import torchvision
print(torchvision.__version__)
新建一个python文件envtest.py,运行,验证安装结果。
# envtest.py
import torch
print('CUDA available: ' + str(torch.cuda.is_available()))
print('cuDNN version: ' + str(torch.backends.cudnn.version()))
a = torch.tensor([0., 0.], dtype=torch.float32, device='cuda')
print('Tensor a =', a)
b = torch.randn(2, device='cuda')
print('Tensor b =', b)
c = a + b
print('Tensor c =', c)
import torchvision
print(torchvision.__version__)
jetson 免密登录
Settings搜索Users
这里将Automatic Login打开即可开机免密登录了