Jetson Orin Nano(8G) 刷机

Jetson Orin Nano(8G) 刷机

参考教程:Jetson Orin Nano Developer Kit系统刷机
新手入门Jetson开发第一关:学会刷机

1 在主机虚拟机ubuntu安装sdkmanager

sudo dpkg -i sdkmanager_1.9.3__xx_amd64.deb
sdkmanager

登录好英伟达账号后直接给我用USB转typeC数据线将jetson与主机连接即可,TargetHardWare显示型号即连接成功。
在这里插入图片描述
现在就能开始进行刷机任务,进入“STEP 1”之后,建议将“Host Machine”的安装选项取消掉(如图9),因为这部分会在Ubuntu主机上安装CUDA开发环境,除非您的系统上有装上NVIIDA的GPU卡,否则这些安装是没有任何作用,还会浪费很多时间去下载安装包与安装环境。

这里就按照图里的选就行了,然后continue

在这里插入图片描述
然后等待
第一个进度条到100%后下面的继续安装
在这里插入图片描述
然后中途会跳出这个,设定账号密码,我这里设定的是账号密码均是nvidia,然后点击Flash烧录即可

这里应该选择Manual手动,然后下面的Storage Device 应该选择NVME

在这里插入图片描述
这是没有刷机之前的版本

其实第一步应该是将J14 的9 10 引脚短接
在这里插入图片描述
在这里插入图片描述
J14 在风扇底下

这是使用SDK Mananger执行刷机时,所必须执行的步骤。在Jetson Nano(含2GB)、NX与Orin Nano等系列开发套件中,在“背部风扇下方”都有一组针脚(如下图左),其中右数第3/4针脚分别为“FC REC”与“GND”功能(如下图右上方),在关闭电源的状态下,使用一般条线将这两个脚位进行“短接”(如下图右下方)。

在这里插入图片描述

在这里插入图片描述
我这里应该选择第二个,要不然会一直刷机不成功。

在这里插入图片描述

在这里插入图片描述
按照提示进行解决。

在这里插入图片描述

只有这个NVIDIA Container Runtime没有装成功,应该不打紧

在这里插入图片描述
NVIDIA Jetson板子上安装nvidia docker需要注意的问题_nvidia-container-cli: initialization error: load l-CSDN博客

如果不安装docker去使用GPU的话这个装不装问题不大

安装jtop:

sudo apt update
sudo apt install python3
sudo apt install python3-pip

sudo pip3 install -U pip
sudo pip3 install jetson-stats

在这里插入图片描述
完蛋,刷机失败了

ubuntu虚拟机启动失败黑屏解决方案及原因

ubuntu虚拟机启动失败黑屏解决方案及原因
虚拟机Ubuntu系统突然打不开

df -h
sudo apt autoremove --purge snapd

主机可以ping同Ubuntu,但Ubuntu不能ping同主机解决方法

主机可以ping同Ubuntu,但Ubuntu不能ping同主机解决方法

我们右击win键,打开网络连接->高级网络设置->下拉找到windows防火墙->高级设置,然后在入站规则内下拉,找到“文件和打印机共享(回显请求-ipv4)”,将这两个启用即可。

在这里插入图片描述

jetson填坑-单独安装cuda,cudnn,tensorrt任意适用版本

jetson填坑-单独安装cuda,cudnn,tensorrt任意适用版本

sudo apt-get install cuda-toolkit-12.6

sudo vim  ~/.bashrc

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.6/lib64
export PATH=$PATH:/usr/local/cuda-12.6/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.6

在这里插入图片描述

miniconda3安装

下载Miniconda3-py310_23.10.0-1-Linux-aarch64.sh
清华源下载地址

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-aarch64.sh  

chmod +x Miniconda3-py310_23.10.0-1-Linux-aarch64.sh

./Miniconda3-latest-Linux-aarch64.sh  

source ~/.bashrc  

conda --version  

## conda 换源
vim /home/nx/miniconda3/.condarc
## 注释原来的channels配置,添加下述配置。
channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
## pip 换源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/
## 创建环境
conda create -n track python=3.10
conda activate track
## 设置默认启动环境
vim ~/.bashrc
conda activate track
source ~/.bashrc

ImportError: libcusparseLt.so.0: cannot open share object file: No such file or directory

需要安装 libcudasparseLt。使用这个链接:https://developer.nvidia.com/cusparselt-downloads

wget https://developer.download.nvidia.com/compute/cusparselt/0.7.1/local_installers/cusparselt-local-tegra-repo-ubuntu2204-0.7.1_1.0-1_arm64.deb
sudo dpkg -i cusparselt-local-tegra-repo-ubuntu2204-0.7.1_1.0-1_arm64.deb
sudo cp /var/cusparselt-local-tegra-repo-ubuntu2204-0.7.1/cusparselt-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install libcusparselt0 libcusparselt-dev

Jetson Orin Nano (8G) 算力

40TOPS
在这里插入图片描述
在这里插入图片描述

jetson torch torchvision 安装

在Jetson设备上安装PyTorch和Torchvision的完整指南
https://developer.nvidia.com/embedded/downloads#?search=torch
在这里插入图片描述
下载,然后安装对应的torch即可
安装torchvision
Jetson上的gpu版本torchvision没有现成的安装包,需要自行编译安装。首先下载对应版本的torchvision
在这里插入图片描述

# 安装工具链
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libopenblas-dev libavcodec-dev libavformat-dev libswscale-dev
# 下载torchvision
git clone --branch v0.20.0 https://github.com/pytorch/vision torchvision
cd torchvision
export BUILD_VERSION=0.20.0  # v0.20.0 为torchvision版本
python3 setup.py install --user

编译速度是真慢,感觉至少编译了半个小时

import torchvision
print(torchvision.__version__)

新建一个python文件envtest.py,运行,验证安装结果。

# envtest.py
import torch
print('CUDA available: ' + str(torch.cuda.is_available()))
print('cuDNN version: ' + str(torch.backends.cudnn.version()))
a = torch.tensor([0., 0.], dtype=torch.float32, device='cuda')
print('Tensor a =', a)
b = torch.randn(2, device='cuda')
print('Tensor b =', b)
c = a + b
print('Tensor c =', c)

import torchvision
print(torchvision.__version__)

jetson 免密登录

Settings搜索Users
在这里插入图片描述
在这里插入图片描述
这里将Automatic Login打开即可开机免密登录了

### Jetson Orin Nano 刷机教程 #### 准备工作 为了确保刷机过程顺利,在开始之前需准备好必要的硬件和软件环境。 - **硬件准备** - 使用杜邦线或者跳线帽把Jetson的`FC_REC`与`GND`短接,使设备能够进入恢复模式[^2]。 - 确认已有一根支持数据传输功能的USB/Type-C线用于连接Ubuntu主机与Orin Nano开发套件,并确保该线缆质量良好以保障稳定的数据通信。 - **软件准备** - 下载并安装适用于当前系统的SDK Manager。对于Ubuntu系统而言,可以通过终端命令完成安装操作: ```bash sudo dpkg -i sdkmanager_2.1.0-11669_amd64.deb ``` - 若遇到依赖项缺失的情况,则可通过运行以下命令来修复: ```bash sudo apt --fix-broken install ``` #### 进入刷机模式 将Jetson Orin Nano 开发者套件接入电源前,先保持其处于断电状态。按照前述方法使用导线连接指定引脚后,再为装置提供电力供应。此时应观察到电源指示灯点亮,表明设备成功进入了等待刷写的预备阶段。 #### SDK Manager 操作流程 启动SDK Manager应用程序,一旦正确识别到了所连接的目标设备(即Jetson Orin Nano Developer Kit),界面中将会显示对应的选择提示。用户应当在此处选取匹配的产品型号继续下一步骤[^5]。 #### 命令行刷机指南 除了图形化的SDK Manager外,也存在基于命令行的方式来进行固件更新: - 创建一个新的文件夹作为工作空间,并切换至其中; ```bash mkdir Orin_NX && cd Orin_NX ``` - 解压缩预先获取的操作系统映像包; ```bash tar xf Jetson_Linux_R35.4.1_aarch64.tbz2 ``` - 接下来进入到解压后的`Linux_for_Tegra/rootfs`子目录内展开root filesystem镜像; ```bash cd Linux_for_Tegra/rootfs/ sudo tar xpf Tegra_Linux_Sample-Root-Filesystem_R35.4.1_aarch64.tbz2 ``` - 返回上级目录执行二进制应用程序以及预处理脚本; ```bash cd .. sudo ./apply_binaries.sh sudo ./tools/l4t_flash_prerequisites.sh ``` 以上便是针对Jetson Orin Nano 的两种主要刷机途径介绍,无论是采用GUI还是CLI均能实现相同目的—刷新内置存储器中的操作系统版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值