基于CSVR算法的锅炉燃烧优化研究
摘要
在电力需求增加,在电气保护和环保要求更加严格的情况下,燃煤机组的整体效率需要快速提升,因此烟气火灾的优化成为研究领域。锅的优化技术可以分为两部分:建立准确的锅预测模型和多目标优化方法。蒸气燃烧过程复杂,机械建模难以快速准确地论证控制参数对蒸气效率和NOx排放的影响,不适合后续优化。由于结果的速度和准确性,数据建模和优化方法被广泛使用。基于所制备的样品,采用加权法和高速非低密度-低密度算法(NSGA-II)对两种高NO2排放模型的雾化和NO2提取效率进行优化,所有方法都可以获得最优解,但NSGA-II算法可以在一次操作中提取尽可能多的可能解,可以反映优化后观察到的NOx差异对应的同一退化的不同变化,为运行人员提供不同的优化参考。
关键词:锅炉效率;NOx排放浓度;最小二乘;
1 引言
随着社会能源需求和消耗的不断增加,环境污染问题越来越突出,节能环保越来越受到重视。随着能源消耗改革的深入,消耗大量化石能源的行业面临着严峻的考验,其中国是一个能源生产和消耗大国。据统计,2020年煤炭消耗占能源消耗的58%。2015年至2020年,全社会用电量在未来六年内有所增加,2019年全社会总用电量达到72255亿千瓦时。2019年国内发电量75034.3亿千瓦时,供热量52201.5亿千瓦时,占69.9%。截至2020年6月底,中国发电总装机容量为20.5%的5亿千瓦,其中供热装机容量为12.1亿千瓦,约占总装机容量的59%。热能中燃煤发电装机10.5亿千瓦,燃气发电装机9371万千瓦。数据显示,燃煤热电厂将继续是制造业的主体。燃煤机组在运行过程中会排放大量温室气体二氧化碳、有害氮氧化物污染物、二氧化硫和细颗粒物。污染物的排放造成了酸雨、雾霾等一系列环境问题,威胁着环境和气候,对人们的生活产生了许多负面影响。煤炭单位作为国家能源产业的主体,应减少排放,解决环境问题;另一方面,我们应该面对能源行业的内部竞争,提高效率,降低能源生产成本。锅炉作为燃煤机组的重要设备之一,其运行状况与电厂的经济效益和污染物排放密切相关。
2 数据建模方法——CSVR算法原理
2.1引言
近年来,不同的机器学习方法由于其良好的回归预测性能,尤其是良好的非线性回归性能,在各个领域的数据预测建模中得到了越来越多的应用。LSSVR算法是SVR算法的扩展,其以结构风险最小化为准则,将原规划问题转化为求解线性方程组,具有许多优点。然而,在实际应用过程中,LSSVR算法仍然存在一些缺点:对样本的敏感性高,不具有稀疏性。如果样本数据维数高,且样本数量大,则难以计算工作中矩阵的逆。因此,对LSSVR算法进行了改进,提出了一种新的改进算法,改善算法性能。
2.2最小二乘支持向量回归原理
对于给定的样本集:
把输入量映射到高维特征空间中,而后构建最优决策函数,以结构风险最小化原则来求解问题,LSSVR 则使用了二次损失函数。
在已知样本集:
在这种情况下,可根据方程组对参数 进行求解,而LSSVR算法用于计算预测值的决策函数即由这些关键参数构成:
根据支持向量的定义:近年来,机器学习方法由于其良好的回归预测性能,即良好的非线性回归性能,越来越多地被用于各种领域的数据预测建模。LSSVR算法是SVR算法的扩展。其以结构风险最小化为准则,将原规划问题转化为线性方程组求解,具有许多优点。然而,在实际应用过程中,LSSVR算法仍然存在一些缺点:它对样本的适应性很强,很少缺少。如果样本数据的大小很高,样本数也很高,则很难计算工作中矩阵的逆值。因此,对LSSVR算法进行了改进,提出了一种新的改进算法。
3 改进PSO联合CSVR算法建模流程
3.1输入数据预处理
根据变量分析,本文选择锅炉负荷系数、燃煤量、总风量、过量空气系数和二次风强度作为两个模型的输入,锅炉效率和NO2排放浓度分别作为两个模型的输出。由于变量单位和数值范围不同,原始数据的直接输入会影响训练的准确性。因此,输入变量应该标准化,其典型的标准化模型如下:
式中:x’代表原始输入数据,x’是平均值,是数据x’对应的标准差。其中数据归化到[0,1]和[-1,1]范围内,但这两种法要受极值影响,理数据体现样整归且化数据,又称标标准准理后样本输变量仍五维,ߎ具有关性,利训练练方法,通过一系线性,将原本相入变量,转换ߎߎ相关输入变变量,设经归一化后l个样本的输入样本矩阵为:
个样本输入变量为m维),计算它的协方差矩阵G:
对G 特征值分解,并将特征值按从大到小排列,得到及与之对应的特征向量,按公式计算主成分累积解释率:
以主成分累积解释率不低于 90%为标准进行选择,用所对应的特征向量构成矩阵:
重构降维后输入数据矩阵为:
主成分累积解释率代表着重构后数据对原始数据信息反映情况,如果选择所有特征向量进行数据重构,则保留所有原始数据信息,且输入维数保持不变,这只会消除变量之间的相关性;当主成分的累积解释速度较高时,再现的数据反映了大部分原始信息,并去除了一些噪声信息,从而促进了机器学习训练。
3.2 建模流程与参数设置
使用CSVR算法对锅炉效率以及锅炉排放浓度NO2,建立预测模型的流程图如图1所示。首先读取锅炉运行数据,然后对数据进行标准化,采用PCA方法对输入变量进行降维,训练模型,最后对预测结果进行反向归一化并发送。
图1 CSVR 算法建模流程示意图
3.3 建模结果分析
本例中选用 1000 组数据,其中,900个数据组用作训练工具包,其余100个数据组用作测试工具包,以测试模型的准确性。输入变量的协方差矩阵分解得到特征向量对应特征值从小到大排列为:
根据公式计算主成分累积解释率:
为对比不同算法建模效果,将csvr算法、LSSVR算法和BP神经网络算法相结合,采用相应改进的PSO算法,对PCA标准化和降维后的数据进行建模,并对测试集预测结果进行比较分析。
3.4 改进PSO联合CSVR算法建模结果
图2 优化后CSVR算法锅炉效率预测值
图3 优化后CSVR算法锅炉NOx排放浓度预测值
在对改进的PSO算法进行优化后,对锅炉效率的csvr算法建模的参数为:6.1.5939,90.4。一组锅炉效率模型试验的预测结果如图3所示。锅炉效率预测模型选取69个样本组作为CSVR算法,主要误差指标如表1所示。
表1 优化后CSVR算法模型预测数据误差
类别 最大相对误差/% 均方根误差 平均相对误差/%
锅炉效率 0.0524 0.00019 0.0165
NOx排放浓度 2.2382 2.3221 0.7175
为了比较改进的PSO算法优化对模型参数的影响,使用默认参数以及图4预测锅炉效率和锅炉排放浓度的模型,如图4所示,分别为两个模型选择了83组支持向量和117组支持向量,模型错误率如表2所示。
图4 默认参数CSVR算法锅炉效率预测值
图5 默认参数CSVR算法锅炉NOx排放浓度预测值
表3 默认参数CSVR算法模型预测数据误差
类别 最大相对误差/% 均方根误差 平均相对误差/%
锅炉效率 0.0865 0.0003 0.0259
NOx排放浓度 2.9390 3.0154 0.9979
比较表2和表3,从数据指标来看,优化后锅炉效率模型的最大相对误差、平均误差和均方误差提高了不低于35%;无二炉排放浓度模型的最大相对误差、平均误差值和平均平方误差增加不小于23%。结果表明,改进的粒子群优化算法能够找到更好的参数组合进行建模,建模效果大大提高。
3.5 LSSVR算法建模结果
图6 LSSVR算法锅炉效率预测值