DNN(深度神经网络)

深度神经网络(Deep Neural Networks, 以下简称DNN)

神经网络发展

  • 第一代神经网络又称为感知器,由科学家Frank Rosenblatt发明于1950至1960年代,它的算法只有两层,输入层输出层,,主要使用的是一种叫做sigmoid神经元(sigmoid neuron)的神经元模型,主要是线性结构。它不能解决线性不可分的问题,如异或操作。

  • 为了解决第一代神经网络的缺陷,在1980年左右提出第二代神经网络多层感知器(MLP)。和第一代神经网络相比,第二代在输入输出层之间有增加了隐含层的感知机,引入一些非线性的结构,解决了之前无法模拟异或逻辑的缺陷。第二代神经网络让科学家们发现神经网络的层数直接决定了它对现实的表达能力,但是随着层数的增加,优化函数愈发容易出现局部最优解的现象,由于存在梯度消失的问题,深层网络往往难以训练,效果还不如浅层网络。

  • 2006年Hinton采取无监督预训练(Pre-Training)的方法解决了梯度消失的问题,使得深度神经网络变得可训练,将隐含层发展到7层,有一个预训练的过程。使用微调技术作为反向传播和调优手段。减少了网络训练时间,并且提出了一个新的概念叫做"深度学习,
    直到2012年,在ImageNet竞赛中,Hinton教授的团队,使用以卷积神经网络为基础的深度学习方案,他们训练的模型面对15万张测试图像时,预测的头五个类别的错误率只有 15.3%,而排名第二的日本团队,使用的SVM方法构建的模型,相应的错误率则高达 26.2%。从此一战成名!2012年后深度学习就成为主流。

DNN

DNN是一个很广的概念,CNN(卷积神经网络)、RNN(递归神经网络)等都属于其范畴之内。CNN多用于网络结构数据类型的任务,如图像;RNN多用于时间序列类型的任务,如音频、文本(NLP)等

DNN神经网络的组成:

  1. 输入层:神经网络的第一层,原始的样本数据
  2. 隐藏层:除了输入层,输出层,中间的都是隐藏层
  3. 输出层:神经网络的最后一层,最终的计算结果

神经网络的特点:

  1. 每个连接都有个权值
  2. 同一层神经元之间没有连接
  3. 最后的输出结果对应的层也称之为全连接层
    在这里插入图片描述
    由于DNN层数多,权重系数w和偏置b的数量很多。在DNN是如何定义的呢?
    以下图一个三层的DNN为例,第二层的第4个神经元到第三层的第2个神经元的线性系数定义为w324。上标3代表w所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4,输入层是没有w参数的
    在这里插入图片描述
    偏置b,以这个三层的DNN为例,第二层的第三个神经元对应的偏置定义为b23上标2代表所在的层数,下标3代表偏置所在的神经元的索引。输入层是没有偏置参数b的。
    在这里插入图片描述
<think>好的,我现在需要回答用户关于DNN深度神经网络)的介绍、原理和实现的问题。首先,我需要回顾用户提供的引用内容,确保回答准确并符合这些资料的信息。 用户给出的引用有三个:[^1]、[^2]和[^3]。根据引用[^1],DNN是有多个隐藏层的神经网络,也称为多层感知机(MLP)。引用[^3]详细解释了DNN的结构,包括输入层、隐藏层和输出层,以及训练过程中如何通过损失函数和梯度下降优化参数。而引用[^2]则提到DNN与DBN的区别,但用户现在的问题是关于DNN的介绍,所以可能需要先忽略这部分,除非对比有助于理解。 接下来,我需要组织回答的结构,确保覆盖介绍、原理和实现。介绍部分需要定义DNN,强调其多层结构。原理部分应包括前向传播、激活函数、损失函数、反向传播和梯度下降。实现部分可以给出一个简单的Python代码示例,比如使用TensorFlow或Keras框架,这样用户更容易理解。 同时,用户要求生成相关问题,我需要根据内容提出几个相关的问题,例如优化方法、激活函数选择、过拟合处理等。 需要注意使用中文回答,数学公式用$...$和$$...$$格式。检查是否有遗漏的要点,比如DNN的应用场景或与其他网络的区别,但根据用户的问题,重点应在介绍、原理和实现上,所以可能不需要深入讨论应用场景,除非必要。 最后,确保引用标识正确添加,比如在提到多层结构时引用[^1],在损失函数和梯度下降时引用[^3]。可能需要调整引用的位置,使其自然融入内容中。</think>### DNN深度神经网络)介绍与原理 #### 1. 基本定义 DNN(Deep Neural Network)是一种包含**多个隐藏层**的神经网络,也称为多层感知机(MLP)[^1]。其结构分为输入层、隐藏层(至少2层)和输出层,通过非线性激活函数实现复杂映射。 #### 2. 核心原理 **(1) 前向传播** 输入数据逐层传递,每层计算为: $$h^{(l)} = \sigma(W^{(l)}h^{(l-1)} + b^{(l)})$$ 其中$W^{(l)}$为权重矩阵,$b^{(l)}$为偏置向量,$\sigma$为激活函数(如ReLU、Sigmoid)。 **(2) 激活函数** 解决线性不可分问题,常用函数包括: - ReLU: $f(x) = \max(0, x)$ - Sigmoid: $f(x) = \frac{1}{1+e^{-x}}$ - Softmax(输出层多分类) **(3) 损失函数** 量化预测值与真实值差距,常见类型: - 均方误差(回归):$L = \frac{1}{N}\sum_{i=1}^N (y_i - \hat{y}_i)^2$ - 交叉熵(分类):$L = -\sum_{i=1}^N y_i \log \hat{y}_i$ [^3] **(4) 反向传播与梯度下降** 通过链式法则计算梯度: $$\frac{\partial L}{\partial W^{(l)}} = \frac{\partial L}{\partial h^{(l)}} \cdot \frac{\partial h^{(l)}}{\partial W^{(l)}}$$ 参数更新公式: $$W^{(l)} \leftarrow W^{(l)} - \eta \frac{\partial L}{\partial W^{(l)}}$$ 其中$\eta$为学习率[^3]。 #### 3. 实现示例(Python + TensorFlow/Keras) ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 构建DNN模型 model = Sequential([ Dense(128, activation='relu', input_shape=(784,)), # 输入层 Dense(64, activation='relu'), # 隐藏层1 Dense(32, activation='relu'), # 隐藏层2 Dense(10, activation='softmax') # 输出层 ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型(假设X_train, y_train已预处理) model.fit(X_train, y_train, epochs=10, batch_size=32) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值