python障碍式期权定价公式

本文深入探讨了障碍式期权的定价方法,通过数学模型和Python脚本实现,详细介绍了障碍期权的不同类型及其定价公式,包括Down-and-incall、Up-and-incall等,并提供了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python障碍式期权定价公式

早期写的障碍式期权的定价脚本

#coding:utf-8
'''
障碍期权
q=x/s
H = h/x H 障碍价格
[1] Down-and-in call	cdi
[2] Up-and-in call	cui
[3] Down-and-in put	pdi
[4] Up-and-in put	pui
[5] Down-and-out call	cdo
[6] Up-and-out call	cuo
[7] Down-and-out put	pdo
[8] Up-and-out put	puo

'''
from math import log,sqrt,exp,ceil
from scipy import stats
import datetime
import tushare as ts
import pandas as pd
import numpy as np
import random
import time as timess
import os

def get_codes(path='D:\\code\\20180313.xlsx'):                                      #从代码表格从获取代码
	codes = pd.read_excel(path)
	codes = codes.iloc[:,1]                              
	return codes

def get_datas(code,N=1,path='D:\\data\\'):                                                          #获取数据N=1当天数据
	datas = pd.read_csv(path+eval(code)+'.csv',encoding='gbk',skiprows=2,header=None,skipfooter=N,engine='python').dropna()  #读取CSV文件 名称为股票代码 解gbk skiprows跳过前两行文字 第一行不做为表头
	date_c = datas.iloc[:,[0,4,5]]                                    #只用第0 列代码数据和第4列收盘价数据
	date_c.index = datas[0]
	return date_c

def get_sigma(close,std_th):
	x_i = np.log(close/close.shift(1)).dropna()
	sigma = x_i.rolling(window=std_th).std().dropna()*sqrt(244)
	return sigma

def get_mu(sigma,r):
	mu = (r-pow(sigma,2)/2)/pow(sigma,2)
	return mu

def get_lambda(mu,r,sigma):
	lam = sqrt(mu*mu+2*r/pow(sigma,2))
	return lam

def x_y(sigma,T,mu,H,lam,q=1):
	x1 = log(1/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
	x2 = log(1/(q*H))/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
	y1 = log(H*H/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
	y2 = log(q*H)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T)
	z = log(q*H)/(sigma*sqrt(T))+lam*sigma*sqrt(T)
	return x1,x2,y1,y2,z

def get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z,q=1):
	f1 = phi*1*stats.norm.cdf(phi*x1,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x1-phi*sigma*sqrt(T),0.0,1.0)
	f2 = phi*1*stats.norm.cdf(phi*x2,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x2-phi*sigma*sqrt(T),0.0,1.0)
	f3 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y1,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y1-eta*sigma*sqrt(T),0.0,1.0)
	f4 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y2,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0)
	f5 = (H-1)*exp(-r*T)*(stats.norm.cdf(eta*x2-eta*sigma*sqrt(T),0.0,1.0)-pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0))
	f6 = (H-1)*(pow(H*q,(mu+lam))*stats.norm.cdf(eta*z,0.0,1.0)+pow(H*q,(mu-lam))*stats.norm.cdf(eta*z-2*eta*lam*sigma*sqrt(T),0.0,1.0))
	return f1,f2,f3,f4,f5,f6

def main(param,t,r=0.065):
	typeflag = ['cdi','cdo','cui','cuo','pdi','pdo','pui','puo']
	r = log(1+r)
	T = t/365
	codes = get_codes()
	H = 1.2
	for i in range(len(codes)):
		sdbs = []
		for j in typeflag:
			code = codes.iloc[i]
			datas = get_datas(code)
			close = datas[4]
			sigma = get_sigma(close,40)[-1]
			mu = get_mu(sigma,r)
			lam = get_lambda(mu,r,sigma)
			x1,x2,y1,y2,z = x_y(sigma,T,mu,H,lam)
			eta = param[j]['eta']
			phi = param[j]['phi']
			f1,f2,f3,f4,f5,f6 = get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z)
			if j=='cdi':
				sdb = f1-f2+f4+f5
			if j=='cui':
				sdb = f2-f3+f4+f5
			if j=='pdi':
				sdb = f1+f5
			if j=='pui':
				sdb = f3+f5
			if j=='cdo':
				sdb = f2+f6-f4
			if j=='cuo':
				sdb = f1-f2+f3-f4+f6
			if j=='pdo':
				sdb = f6
			if j=='puo':
				sdb = f1-f3+f6
			sdbs.append(sdb)
		print(T,r,sigma,H,sdbs)
if __name__ == '__main__':
	param = {'cdi':{'eta':1,'phi':1},'cdo':{'eta':1,'phi':1},'cui':{'eta':-1,'phi':1},'cuo':{'eta':-1,'phi':1},
		'pdi':{'eta':1,'phi':-1},'pdo':{'eta':1,'phi':-1},'pui':{'eta':-1,'phi':-1},'puo':{'eta':-1,'phi':-1}}
	t = 30
	main(param,t)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值