windows系统部署pytorch模型

windows系统部署pytorch模型

使用while true

打包成exe

pip install torch==1.2.0+cpu torchvision==0.4.0+cpu -f https://download.pytorch.org/whl/torch_stable.html

python服务端TCP通讯编程

from socket import *
from time import ctime

HOST = ''
PORT = 2121
BUFSIZ = 1024
ADDR = (HOST,PORT)

tcpSerSock = socket(AF_INET,SOCK_STREAM)
tcpSerSock.bind(ADDR)
tcpSerSock.listen(5)

while True:
    print('waiting for connection...')
    tcpCliSock,addr = tcpSerSock.accept()
    print('connected from:',addr)

    while True:
        data = tcpCliSock.recv(BUFSIZ)
        if not data:
            break
        tcpCliSock.send('ok')
        tcpCliSock.close()
tcpSerSock.close()

Windows部署PyTorch模型可以分为两步: 1. 将PyTorch模型导出为ONNX格式 首先,你需要将PyTorch模型转换为ONNX格式。这可以通过使用PyTorch自带的ONNX导出工具来完成。你可以使用以下代码将模型导出为ONNX格式: ``` import torch import torchvision # 加载PyTorch模型 model = torchvision.models.resnet18(pretrained=True) # 将模型转换为ONNX格式 dummy_input = torch.randn(1, 3, 224, 224) input_names = ["input"] output_names = ["output"] torch.onnx.export(model, dummy_input, "resnet18.onnx", verbose=True, input_names=input_names, output_names=output_names) ``` 在上面的代码中,我们使用了预训练的ResNet18模型作为示例。你需要将 `model` 替换为你自己的PyTorch模型。 2. 使用ONNX运行时加载模型 接下来,你需要使用ONNX运行时来加载导出的ONNX模型。你可以使用以下代码在Python中加载ONNX模型: ``` import onnxruntime # 加载ONNX模型 sess = onnxruntime.InferenceSession("resnet18.onnx") # 获取输入和输出名称 input_name = sess.get_inputs()[0].name output_name = sess.get_outputs()[0].name # 准备输入数据 import numpy as np input_data = np.random.rand(1, 3, 224, 224).astype(np.float32) # 运行模型 output_data = sess.run([output_name], {input_name: input_data})[0] ``` 在上面的代码中,我们使用了ONNX运行时来加载导出的ResNet18模型。你需要将 `resnet18.onnx` 替换为你自己导出的ONNX模型。 注意:在运行ONNX模型之前,你需要安装ONNX运行时。你可以通过以下命令来安装: ``` pip install onnxruntime ``` 希望以上内容对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值