数据结构与算法之美笔记——基础篇(中)——二分查找

本文深入讲解了二分查找的基本原理及非递归、递归实现方法,并探讨了其适用场景和局限性。此外,还详细介绍了几种二分查找的变体问题及其解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二分查找

二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
O(logn) 惊人的查找速度

二分查找的递归与非递归实现

非递归实现

最简单的情况就是有序数组中不存在重复元素

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
 
  while (low <= high) {
    int mid = (low + high) / 2; 
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }
 
  return -1;
}

这个代码我稍微解释一下,low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示 [low, high] 的中间位置。我们通过对比 a[mid] 与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。如果你有一些编程基础,看懂这些应该不成问题。
现在,我就着重强调一下容易出错的 3 个地方。

  1. 循环退出条件
    注意是 low<=high,而不是 low<high。

2.mid 的取值
实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3.low 和 high 的更新
low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3] 不等于 value,就会导致一直循环不退出。

递归的实现

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}
 
private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;
 
  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}

应用的局限性

二分查找依赖的是顺序表结构,简单点说就是数组。
二分查找针对的是有序数据。
数据量太小不适合二分查找。——顺序遍历
数据量太大也不适合二分查找。
二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。

二分查找的变体

查找第一个值等于给定值的元素

查找8 即下标5
在这里插入图片描述

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == 0) || (a[mid - 1] != value)) return mid;
      else high = mid - 1;
    }
  }
  return -1;
}

a[mid] 跟要查找的 value 的大小关系有三种情况:大于、小于、等于。
对于 a[mid]>value 的情况,我们需要更新 high= mid-1;
对于 a[mid]<value 的情况,我们需要更新 low=mid+1。
这两点都很好理解。那当 a[mid]=value 的时候应该如何处理呢?
如果我们查找的是任意一个值等于给定值的元素,当 a[mid] 等于要查找的值时,a[mid] 就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当 a[mid] 等于要查找的值时,我们就需要确认一下这个 a[mid] 是不是第一个值等于给定值的元素

我们重点看第 11 行代码。如果 mid 等于 0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果 mid 不等于 0,但 a[mid] 的前一个元素 a[mid-1] 不等于 value,那也说明 a[mid] 就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现 a[mid] 前面的一个元素 a[mid-1] 也等于 value,那说明此时的 a[mid] 肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新 high=mid-1,因为要找的元素肯定出现在 [low, mid-1] 之间

查找最后一个值等于给定值的元素

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}

重点看第 11 行代码。如果 a[mid] 这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果 a[mid] 的后一个元素 a[mid+1] 不等于 value,那也说明 a[mid] 就是我们要找的最后一个值等于给定值的元素。

如果我们经过检查之后,发现 a[mid] 后面的一个元素 a[mid+1] 也等于 value,那说明当前的这个 a[mid] 并不是最后一个值等于给定值的元素。我们就更新 low=mid+1,因为要找的元素肯定出现在 [mid+1, high] 之间。

查找第一个大于等于给定值的元素

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] >= value) {
      if ((mid == 0) || (a[mid - 1] < value)) return mid;
      else high = mid - 1;
    } else {
      low = mid + 1;
    }
  }
  return -1;
}

如果 a[mid] 小于要查找的值 value,那要查找的值肯定在 [mid+1, high] 之间,所以,我们更新 low=mid+1。

对于 a[mid] 大于等于给定值 value 的情况,我们要先看下这个 a[mid] 是不是我们要找的第一个值大于等于给定值的元素。如果 a[mid] 前面已经没有元素,或者前面一个元素小于要查找的值 value,那 a[mid] 就是我们要找的元素。这段逻辑对应的代码是第 7 行。

如果 a[mid-1] 也大于等于要查找的值 value,那说明要查找的元素在 [low, mid-1] 之间,所以,我们将 high 更新为 mid-1。

查找最后一个小于等于给定值的元素

public int bsearch7(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}

凡是用二分查找能解决的,绝大部分我们更倾向于用散列表或者二叉查找树。即便是二分查找在内存使用上更节省,但是毕竟内存如此紧缺的情况并不多。那二分查找真的没什么用处了吗?

实际上,上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到,二分查找更适合用在“近似”查找问题,在这类问题上,二分查找的优势更加明显。比如今天讲的这几种变体问题,用其他数据结构,比如散列表、二叉树,就比较难实现了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值