Sxklearn.preprocessing之StandardScaler 的transform()函数和fit_transform()函数清晰讲解及其案例应用--已解决

本文详细介绍了在Scikit-learn中StandardScaler的fit_transform()和transform()函数的区别与联系。fit_transform()是fit和transform的组合,用于计算训练集的均值和标准差并进行标准化处理;transform()则使用已知的均值和标准差对数据进行转换。未先fit的数据不能直接使用transform,只有在fit之后,transform才能正确应用标准化参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  楼主之前因为transform()函数和fit_transform()函数两个函数的功能和实现傻傻分不清楚,现在总结一下,主要是看了一位大神的讲解:
添加链接描述

1.两函数功能

首先我们要明确: fit(x,y)传两个参数的是有监督学习的算法;fit(x)传一个参数的是无监督学习的算法,比如降维、特征提取、标准化。

函数实现的功能:

对数据进行标准化处理

使用公式如下:

  其中μ是均值, σ是标准差。目的是使数据服从均值为零,标准差为1的标准正态分布。   一般标准化都是给训练集数据做的,但在以下情况中也必须做数据标准化:交叉验证时的测试集,或预测前获得了一组新的样本等。而在对新的数据或测试集进行标准化时,我们所用的是训练集标准化中的均值μ和标准差σ。因此经常有代码这样写:
from sklearn.preprocessing import StandardScaler
ss= StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

即fit_t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值