摘要
由于成本低廉且易于部署,侧扫声呐是最广泛使用的水下探测仪器之一。然而,海洋环境的复杂性以及目标获取的困难限制了侧扫声呐的检测精度。为了解决这些问题,本研究提出了一种基于Cycle-Consistent Generative Adversarial Network(CycleGAN)模型和改进YOLOv8模型的少样本目标检测方法。首先,考虑到获取侧扫声呐目标图像的困难,所提方法利用CycleGAN模型从光学图像生成伪侧扫声呐图像进行数据增强。其次,通过添加注意力机制、采用可变形卷积网络并更新损失函数,修订了原始YOLOv8模型,以提高侧扫声呐图像的目标检测精度。实验结果表明,CycleGAN模型在生成伪侧扫声呐图像方面有效,并且改进后的YOLOv8模型在侧扫声呐图像目标检测中表现更好。此外,数据增强与改进YOLOv8模型的结合显著提高了侧扫图像的目标检测精度。所提方法能够有效提高水下声呐在海洋勘测中的目标检测效率。
引言
随着声学传感技术和声纳设备的不断发展,利用声纳图像进行水下目标检测已成为一个日益重要的研究领域。全球的军事专家、学者和研究人员对这一领域表现出极大的兴趣,水下目标检测具有广阔的应用前景 [1]。传统的声纳图像目标检测算法主要包括基于统计数学、数学形态学和像素级方法 [2]。然而,这些方法的检测性能较差,且检测时间较长。因此,需要更好的方法来提高声纳图像的检测精度,并减少检测时间。近年来,随着深度学习目标检测模型的快速发展,越来越多的研究人员采用深度学习方法进行水下目标检测 [3]。目前,基于深度学习的目标检测方法在声纳图像领域取得了卓越的表现并得到了广泛应用。这些方法主要分为单阶段方法和两阶段方法,也分别称为候选区域基础和回归基础的目标检测方法。单阶段方法以“你只看一次”(YOLO)系列为代表,直接获得目标类别的概率和位置坐标 [4],与两阶段方法相比,表现出显著更快的性能。检测结果提供了一个反映目标是否存在的置信度参数和一个描述边界框位置的坐标参数。然而,单阶段方法通过主干网络直接提供目标类别和位置的相关信息,而没有使用区域提议网络,因此其精度略低于两阶段方法。因此,单阶段检测更适用于需要高实时性和检测效率的任务,并且对于水下目标检测是有效的。
许多研究表明,YOLO系列算法在水下目标检测中表现良好。王等人 [5] 提出了基于YOLOv3网络的水下目标检测系统,表明YOLOv3是提高侧扫声呐目标检测精度的有效方法。范等人 [6] 提出了一种改进的基于YOLOv4的声呐目标检测与分类算法,极大地减少了网络参数冗余并提高了模型效率。此外,余等人 [7] 提出了结合变换器与YOLOv5s的实时自动目标检测方法,进一步提高了侧扫声呐目标的检测精度。YOLOv7和YOLOv8模型也已得到改进,并在侧扫声呐图像中取得了更高的检测精度 [8,9]。然而,由于声呐数据集的限制和图像样本的不足,目前声呐图像目标检测方法的精度仍有待提高。
为了解决小样本问题,数据增强方法被广泛应用。现有的数据增强方法包括时域和频域增强方法。时域增强方法包括直方图均衡化、对比度拉伸、灰度变换、平滑滤波和锐化滤波。频域增强方法包括傅里叶变换、小波变换、高频增强滤波和低频增强滤波。现代数据增强方法利用深度学习算法,如生成对抗网络(GAN),通过生成伪图像来增强目标图像样本。
GAN的应用也推动了声呐目标图像生成的研究。Sung等人 [10] 提出了使用GAN生成伪声呐图像的方法。无需配对声呐和其他源图像,Cycle Consistent Generative Adversarial Network(CycleGAN)模型继承了GAN的对抗训练思想,采用双重训练学习方法实现源领域和目标领域之间的映射 [11]。因此,当面临小样本侧扫声呐数据集时,CycleGAN模型可以实现从光学遥感图像到侧扫声呐图像的风格转移任务。刘等人 [12] 提出了一种基于CycleGAN模型生成伪前视声呐图像的方法,该方法基于声呐图像建模软件生成的数据集,成功生成了逼真的前视声呐数据。周等人 [13] 提出了基于CycleGAN模型的改进风格转移模型,该模型使用光学图像生成声呐图像,并在增强真实声呐数据后提高了目标检测模型的精度