当需要创建的⼦进程数量不多时,可以直接利⽤multiprocessing中的Process动态成⽣多个进程,但如果是上百甚⾄上千个⽬标,⼿动的去创建进程的⼯作量巨⼤,此时就可以⽤到multiprocessing模块提供的Pool⽅法。
初始化Pool时,可以指定⼀个最⼤进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建⼀个新的进程⽤来执⾏该请求;但如果池中的进程数已经达到指定的最⼤值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执⾏,请看下⾯的实例:
from multiprocessing import Pool
import os,time,random
def worker(msg):
t_start = time.time()
print("%s开始执⾏,进程号为%d"%(msg,os.getpid()))
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执⾏完毕,耗时%0.2f"%(t_stop-t_start))
po=Pool(3) #定义⼀个进程池,最⼤进程数3
for i in range(0,10):
po.apply_async(worker,(i,))
print("----start----")
po.close() #关闭进程池,关闭后po不再接收新的请求
po.join() #等待po中所有⼦进程执⾏完成,必须放在close语句之后
print("-----end-----")
运行结果:
----start----
0开始执⾏,进程号为21466
1开始执⾏,进程号为21468
2开始执⾏,进程号为21467
0 执⾏完毕,耗时1.01
3开始执⾏,进程号为21466
2 执⾏完毕,耗时1.24
4开始执⾏,进程号为21467
3 执⾏完毕,耗时0.56
5开始执⾏,进程号为21466
1 执⾏完毕,耗时1.68
6开始执⾏,进程号为21468
4 执⾏完毕,耗时0.67
7开始执⾏,进程号为21467
5 执⾏完毕,耗时0.83
8开始执⾏,进程号为21466
6 执⾏完毕,耗时0.75
9开始执⾏,进程号为21468
7 执⾏完毕,耗时1.03
8 执⾏完毕,耗时1.05
9 执⾏完毕,耗时1.69
-----end-----
multiprocessing.Pool常⽤函数解析:
apply_async(func[, args[, kwds]]) :使⽤⾮阻塞⽅式调⽤func(并⾏执⾏,堵塞⽅式必须等待上⼀个进程退出才能执⾏下⼀个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
apply(func[, args[, kwds]]):使⽤阻塞⽅式调⽤func
close():关闭Pool,使其不再接受新的任务;
terminate():不管任务是否完成,⽴即终⽌;
join():主进程阻塞,等待⼦进程的退出, 必须在close或terminate之后使⽤;