【飞桨Paddle】RTSP视频流和PP-Human实时行人分析

PP-Human是基于飞桨深度学习框架的业界首个开源的实时行人分析工具,支持图片/单镜头视频/多镜头视频多种输入方式,功能覆盖多目标跟踪、属性识别和行为分析,兼容图片、视频、在线视频流多种数据格式输入。
在这里插入图片描述
环境准备
环境要求: PaddleDetection版本 >= release/2.4 或 develop版本

PaddlePaddle和PaddleDetection安装
(cpu版本)

# PaddlePaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

(GPU)版本

# PaddlePaddle CUDA10.1
python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

克隆PaddleDetection仓库

cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git

安装其他依赖

cd PaddleDetection
pip install -r requirements.txt

预测部署
直接使用默认配置或者examples中配置文件,或者直接在infer_cfg_pphuman.yml中修改配置:

# 例:行人属性识别,直接使用examples中配置
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml --video_file=test_video.mp4 --device=gpu

rtsp推拉流
rtsp拉流预测
对rtsp拉流的支持,使用–rtsp RTSP [RTSP …]参数指定一路或者多路rtsp视频流,如果是多路地址中间用空格隔开。(或者video_file后面的视频地址直接更换为rtsp流地址),示例如下:

# 例:行人属性识别,单路视频流
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE]  --device=gpu

# 例:行人属性识别,多路视频流
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml -o visual=False --rtsp rtsp://[YOUR_RTSP_SITE1]  rtsp://[YOUR_RTSP_SITE2] --device=gpu

视频结果推流rtsp
预测结果进行rtsp推流,使用–pushurl rtsp:[IP] 推流到IP地址端,PC端可以使用VLC播放器打开网络流进行播放,播放地址为 rtsp:[IP]/videoname。其中videoname是预测的视频文件名,如果视频来源是本地摄像头则videoname默认为output.

# 例:行人属性识别,单路视频流,该示例播放地址为 rtsp://[YOUR_SERVER_IP]:8554/test_video
python deploy/pipeline/pipeline.py --config deploy/pipeline/config/examples/infer_cfg_human_attr.yml --video_file=test_video.mp4 --device=gpu --pushurl rtsp://[YOUR_SERVER_IP]:8554

rtsp推流服务基于 rtsp-simple-server, 如使用推流功能请先开启该服务.
rtsp推流如果模型处理速度跟不上会出现很明显的卡顿现象,建议跟踪模型使用ppyoloe_s版本,即修改配置中跟踪模型mot_ppyoloe_l_36e_pipeline.zip替换为mot_ppyoloe_s_36e_pipeline.zip。

PP-Human v2整体方案如下图所示:
在这里插入图片描述
下载并启动rtsp流媒体服务
这里使用github的开源服务,下载并解压

wget https://github.com/aler9/rtsp-simple-server/releases/download/v0.20.2/rtsp-simple-server_v0.20.2_linux_amd64.tar.gz
tar -zxvf rtsp-simple-server_v0.20.2_linux_amd64.tar.gz

更改rtsp-simple-server.yml中端口,设为docker映射端口范围内

vim rtsp-simple-server.yml

将rtspAddress: :8554改为rtspAddress: :5000并保存
启动rtsp流媒体服务

./rtsp-simple-server 

使用python脚本推流和拉流
1、docker内推流

python push_rtsp.py

push_rtsp.py

import cv2
import subprocess as sp

#此处从摄像头获取视频
cap = cv2.VideoCapture(0)
out_rtsp_url = 'rtsp://admin:1qaz2wsx@127.0.0.1:5000/mystream'
# Get video information
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
command = ['ffmpeg',
               '-y',
               '-f', 'rawvideo',
               '-vcodec', 'rawvideo',
               '-pix_fmt', 'bgr24',
               '-s', "{}x{}".format(width, height),
               '-r', str(fps),
               '-i', '-',
               '-c:v', 'libx264',
               '-pix_fmt', 'yuv420p',
               #'-preset', 'ultrafast',
               '-f', 'rtsp',
               out_rtsp_url]
p = sp.Popen(command, stdin=sp.PIPE)

while (cap.isOpened()):
    ret, frame = cap.read()
    if not ret:
        print("Opening camera is failed")
        break
    frame = frame
    print(frame.shape)
    p.stdin.write(frame.tostring())
### 树莓派 PPHuman 项目示例教程 #### 安装依赖项 为了在树莓派上运行 PP-HumanSeg 模型,首先需要安装必要的软件包库。由于树莓派基于 ARM 架构,建议使用 Python OpenCV 来处理图像输入输出。 ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install python3-pip libatlas-base-dev pip3 install opencv-python numpy ``` #### 下载并配置环境 接下来,在树莓派上创建工作目录并克隆 PaddleSeg 仓库: ```bash mkdir ~/pphuman && cd ~/pphuman git clone https://github.com/PaddlePaddle/PaddleSeg.git contrib/PP-HumanSeg cd contrib/PP-HumanSeg ``` 按照指示安装 `paddleseg` 库以及下载预训练模型[^1]: ```bash pip3 install paddleseg python3 pretrained_model/download_pretrained_model.py ``` #### 转换 ONNX 模型 对于资源受限设备如树莓派来说,ONNX 是一种轻量级的选择。可以利用官方提供的工具将 PaddlePaddle 模型转换成 ONNX 格式: ```python from ppdet.core.workspace import load_config, create import onnxruntime as ort import numpy as np import cv2 config_path = 'configs/pp_humanseg_v1_0.yml' cfg = load_config(config_path) model = create(cfg.architecture) input_shape = (1, 3, cfg.export_onnx.input_size[0], cfg.export_onnx.input_size[1]) dummy_input = np.random.randn(*input_shape).astype('float32') ort_session = ort.InferenceSession('output/humanseg.onnx') outputs = ort_session.run(None, {'image': dummy_input}) print(outputs) ``` 这段代码展示了如何加载配置文件、初始化模型结构,并通过随机数据测试导出后的 ONNX 文件是否正常工作。 #### 实现视频流实时分割 最后一步是编写一个简单的应用程序来捕获摄像头帧并对每一帧执行人像分割操作。这里给出一段基本框架供参考: ```python cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() # 预处理:调整大小到固定尺寸 resized_frame = cv2.resize(frame, tuple(reversed(input_shape[-2:]))) # 推理过程... # 后处理:显示结果 cv2.imshow('Human Segmentation', output_image) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release() ``` 此部分省略了具体的推理逻辑实现细节,实际应用时需根据前面提到的方法完成这部分功能开发。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值