随机过程总结(3)--一些非平稳过程

本文介绍了平稳过程和非平稳过程的基本概念,包括宽平稳过程和严平稳过程的定义及区别,通过具体实例进行说明。此外,还探讨了非平稳过程中的循环平稳过程和正交增量过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平稳过程与一些非平稳过程

平稳过程

常用的概念是宽平稳过程(WSS),宽平稳过程要求该过程的一阶矩和二阶矩不时变,即:

E{x(t)}=mx(t)=mx(t+τ)∀τ∈R\mathbb{E}\{x(t)\}=m_{x}(t)=m_{x}(t+\tau) \forall \tau \in \mathbb{R}E{x(t)}=mx(t)=mx(t+τ)τR

E{x(t1)x(t2)}=Rx(t1,t2)=Rx(t1+τ,t2+τ)=Rx(t1−t2,0)∀τ∈R\mathbb{E}\left\{x\left(t_{1}\right) x\left(t_{2}\right)\right\}=R_{x}\left(t_{1}, t_{2}\right)=R_{x}\left(t_{1}+\tau, t_{2}+\tau\right)=R_{x}\left(t_{1}-t_{2}, 0\right) \forall \tau \in \mathbb{R}E{x(t1)x(t2)}=Rx(t1,t2)=Rx(t1+τ,t2+τ)=Rx(t1t2,0)τR

严平稳过程的条件比宽平稳苛刻得多,并且严平稳蕴含宽平稳过程,严平稳过程有如下要求:

FX(xt1+τ,…,xtn+τ)=FX(xt1,…,xtn)F_{X}\left(x_{t_{1}+\tau}, \ldots, x_{t_{n}+\tau}\right)=F_{X}\left(x_{t_{1}}, \ldots, x_{t_{n}}\right) \quadFX(xt1+τ,,xtn+τ)=FX(xt1,,xtn) for all τ,t1,…,tn∈R\tau, t_{1}, \ldots, t_{n} \in \mathbb{R}τ,t1,,tnR and for all n∈Nn \in \mathbb{N}nN

例子:

  1. 设Y为一个R.V.,为0到2pi上的均匀分布,则如下随机过程(序列)是一个严平稳过程

Xt=cos⁡(t+Y)  for t∈RX_{t}=\cos(t+Y) \space\space for\space t\in\mathbb{R}Xt=cos(t+Y)  for tR

  1. 白噪声不一定是严平稳过程,例如,当omega为0到2pi上的均匀分布时,如下序列就不是严平稳的

zt=cos⁡(tω)(t=1,2,…)z_{t}=\cos (t \omega) \quad(t=1,2, \ldots)zt=cos(tω)(t=1,2,)

  1. 平稳与否可以用ADF方法进行置信度检验

在这里插入图片描述

非平稳过程

以下简单介绍两种非平稳过程

  1. 循环平稳过程

其定义此处步赘述

PAM信号就是典型的周期平稳过程而非宽平稳过程,从而也计算不了它的谱。

然而周期平稳过程与宽平稳过程之间只相差一层窗户纸,给周期平稳信号加上一个均匀分布的随机相位,周期平稳过程就可以变成宽平稳过程

  1. 正交增量过程: 某过程前面的一部分和后面的一部分没有相关性

定义:

取∀t1<t2≤t3<t4有(X1−X2)⊥(X3−X4)取\forall t_{1}<t_{2} \leq t_{3}<t_{4} \\ 有(X_1-X_2)\perp (X_3-X_4)t1<t2t3<t4(X1X2)(X3X4)

需要注意这两点:

  • 正交增量过程比独立增量过程更加特殊: 当独立增量过程的均值为0时,进化为正交增量过程

  • 一个随机过程为正交增量过程的充分必要条件是其自相关函数满足

RX(s,t)=F(min(s,t))R_X(s,t)=F(min(s,t))RX(s,t)=F(min(s,t))

为正交增量过程的充分必要条件是其自相关函数满足

RX(s,t)=F(min(s,t))R_X(s,t)=F(min(s,t))RX(s,t)=F(min(s,t))

1.设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。试用Matlab编程产生其三个样本函数。 2.假设平稳白噪声X(t)通过如图所示的线性系统,试求互相关函数,并画出其图形。 3.利用 matlab 程序设计一正弦型信号加高斯白噪声的复合信号。 (1)分析复合信号的功率谱密度、幅度分布特性; (2)分析复合信号通过RC积分电路后的功率谱密度相应的幅度分布特性; (3)分析复合信号通过理想低通系统后的功率谱密度相应的幅度分布特性。 4.利用 matlab 程序分别设计一正弦型信号,高斯白噪声信号。 (1)分别分析正弦信号、高斯噪声信号以及两者复合信号的功率谱密度、幅度分布特性; (2)分别求(1)中的三种信号的Hilbert 变换,并比较功率谱幅度分布的变化。 (3)分别求(1)中的三种信号对应的复信号,并比较功率谱幅度分布的变化。 (4)分析、观察(2)中的三种信号与其相应Hilbert 变换信号之间的正交性。 5.利用matlab程序设计实现图3.5.2所示的视频信号积累的检测系统,并对系统中每个模块的输入输出信号进行频域、时域分析,并分析相应信号的统计特性。 6.利用Matlab程序分别设计正弦信号、高斯白噪声信号,分析正弦信号、高斯白噪声信号以及这两者的复合信号分别通过以下四种非线性器件前后的功率谱幅度分布变化: (1)全波平方律器件 (2)半波线性律器件 (3)单向理想限幅器件 (4)平滑限幅器件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值