最小二乘支持向量机(LSSVM)学习记录

本文记录了最小二乘支持向量机(LSSVM)的学习过程,包括理论基础和Matlab实现。重点介绍了如何使用LSSVM工具箱进行数据准备、模型训练、参数调整以及主要函数的功能,如`trainlssvm`、`tunelssvm`等,并提供了一个简单的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小二乘支持向量机

最小二乘支持向量机理论

先埋个坑,先实现再细看理论

最小二乘向量机Matlab实现

工具下载

网上的资源乱七八糟,工欲善其事必先利其器。
我找到的是这个工具箱,有很不错的入门例子
----------------------------------------------------->>>>网址备忘<<<-------------------------------------------------------

LSSVM大体步骤

在这里插入图片描述

  1. 准备好数据 一般是 训练数据X的结构(样本个数X样本属性/特征) 每一行是一个样本,每一列是一个特征。
  2. 该LSSVM工具箱提供了2种接口 一种就是正常的函数调用 ,一种是面向对象的调用方法(类似python…可以暂时忽略),正常函数调用更简单。
  3. 对模型参数进行调整 看文档是内置了有 模拟退火算法进行参数寻优(由于自己要用其他优化算法这里对我没啥用) 选取使模型性能最优的参数 一般就是 γ \gamma γ σ 2 {\sigma}^2 σ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值