SVM & FC+Softmax 分类

本文探讨了支持向量机(SVM)在小样本分类问题中的优势,与全连接层加softmax用于大规模样本的区分方式进行了对比。SVM通过最大化间隔实现二分类,而全连接层通过交叉熵优化多分类。两者在不同规模数据和非线性问题上的表现和优化策略各有侧重点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

支持向量机是一种二分类模型算法,它的基本模型是定义在特征空间的间隔最大的线性分类器,说白了就是在中间画一条线,然后以 “最好地” 区分这两类点。以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。

样本数量b,类别数量n,特征长度d。

全连接+softmax(适合大样本量):
Y=X@W+b
X [b, d] W [d, n] b [n] Y [b, n]
Y按行进行softmax,即每个样本属于各个类别的概率和为1
使用交叉熵损失优化

SVM(适合小样本量):
Y=X@W
X [b, d] W [d, n] Y [b, n]
使用sigmoid将结果映射到[0, 1]
原则上每个样本属于每个类别的概率均属于[0, 1]且无和为1的限制
W每列代表一个SVM分类器,n个类别共n个SVM分类器,每个SVM分类器输出该样本属于某一个类的概率(即每个SVM均做二分类)
对于第j个SVM分类器,其损失定义为:SVMj=1b∑i=1b(outij−gtij)2outij∈[0,1] gtij=0/1,且对“行和”“列和”无限制总损失:SVMj=1n1b∑j=1n∑i=1b(outij−gtij)2 对于第j个SVM分类器,其损失定义为:\\ SVM_j=\frac{1}{b}\sum_{i=1}^b(out_{ij}-gt_{ij})^2\\ out_{ij}\in[0,1]\:gt_{ij}=0/1,且对“行和”“列和”无限制\\ \\ 总损失: SVM_j=\frac{1}{n}\frac{1}{b}\sum_{j=1}^n\sum_{i=1}^b(out_{ij}-gt_{ij})^2 对于第jSVM分类器,其损失定义为:SVMj=b1i=1b(outijgtij)2outij[0,1]gtij=0/1,且对行和”“列和无限制总损失:SVMj=n1b1j=1ni=1b(outijgtij)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MallocLu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值