目录
概述
在这个Kaggle的笔记本中,作者进行了关于咖啡店销售数据的分析。该案例提供了对数据科学和可视化技巧的全面展示,适合用作博客内容来介绍如何用Python分析实际商业数据。这个Kaggle笔记本是一个很好的例子,展示了如何利用数据科学技术来分析和解释商业数据,适合在博客中介绍数据科学在现实世界中的应用。你可以在博客中详细介绍每个步骤的技术细节和业务洞察,为读者提供实际操作的框架和灵感。
环境依赖
-
编程语言:
- Python:作为数据科学领域最受欢迎的编程语言之一,Python 提供了丰富的库和框架,适合进行数据处理、分析、机器学习和可视化等任务。
-
主要的库和工具:
- NumPy:提供高性能的多维数组对象和对这些数组的操作。它是进行科学计算的基础库,支持大量的维度数组和矩阵运算。
- Pandas:提供了DataFrame等数据结构,支持灵活的数据操作,是处理结构化数据的理想工具。
- Matplotlib:一个强大的绘图库,支持多种静态、动态和交互式的图表。
- Seaborn:基于Matplotlib,集成了更多的图表类型,专注于统计可视化,使用简单的代码就可以生成复杂的统计图表。
- Plotly:支持创建交互式图表的库,使得数据的展示更加直观和互动。
-
开发环境:
- Jupyter Notebook 或 JupyterLab:这是数据科学领域广泛使用的开发工具,提供了一个便捷的web界面,允许你创建和共享包含实时代码、可视化和说明文本的文档。
- IDEs(如 PyCharm, Visual Studio Code):这些集成开发环境支持更复杂的项目管理和开发需求,提供代码编辑、调试和版本控制等功能。
-
安装和管理工具:
- pip:Python的包安装器,用于安装和管理上述库。
- conda:一个开源包管理系统和环境管理系统,可以用于安装、运行和升级包和依赖关系。
-
操作系统:
- 可以在多种操作系统上部署,如Windows、macOS和Linux等,这些系统提供了运行Python及其库的平台。
数据描述
字段名称 | 描述 |
---|---|
transaction_id | 代表单个交易的唯一顺序ID。 |
transaction_date | 交易日期(格式:MM/DD/YY)。 |
transaction_time | 交易时间戳(格式:HH:MM:SS)。 |
transaction_qty | 销售商品的数量。 |
store_id | 发生交易的咖啡店的唯一ID。 |
store_location | 发生交易的咖啡店的位置。 |
product_id | 销售产品的唯一ID。 |
unit_price | 销售产品的零售价格。 |
product_category | 产品类别的描述。 |
product_type | 产品类型的描述。 |
product_detail | 产品详细描述。 |
代码概述
导包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from plotly.offline import iplot
from plotly.subplots import make_subplots
这段代码是用于导入进行数据分析和可视化所需的Python库的标准代码。各个库的功能和用途如下:
-
numpy (np): 提供了支持大量维度数组与矩阵运算的函数库,是科学计算的基础包。广泛用于数据处理中的各种数学运算。
-
pandas (pd): 是Python的一个数据分析库,提供了高效地操作大型数据集所需的工具和数据结构,如DataFrame。
-
matplotlib.pyplot (plt): 是一个非常流行的绘图库,提供了一种类似于MATLAB的绘图系统。用于创建静态、动态、交互式的图表。
-
seaborn (sns): 基于matplotlib的数据可视化库,提供了一种高级接口,专注于统计图形的绘制。它使得绘制吸引人的统计图表变得更简单。
-
plotly.express (px) 和 plotly.subplots:
- plotly.express: 是一个简化的接口,允许快速制作复杂的图表。Plotly Express 支持一系列图表和图形类型。
- make_subplots 和 iplot:用于创建多子图(subplot)的布局和交互式图表。make_subplots 用于构建含有多个子图的图表布局,而 iplot 是用于显示交互式图表的函数。
这些库共同为数据科学和机器学习项目提供了强大的数据探索、处理、分析及可视化能力。使用这些工具,你可以从大量数据中洞察见解并以图形的方式展示出来,非常适合进行复杂的数据分析和生成专业的报告。
数据读取
df = pd.read_excel('Coffee Shop Sales.xlsx')
df.head()
-
加载 Excel 文件:
pd.read_excel('Coffee Shop Sales.xlsx')
:这是 Pandas 库用来读取 Excel 文件的函数。它接受文件名作为参数,将数据加载到 DataFrame 中。这是直接处理 Excel 文件的高效方法。
-
查看数据:
df.head()
:此函数默认返回 DataFrame 的前五行。这是一种快速查看数据初貌的方法,可以帮助你了解数据集包含哪些列和基本的数据格式。
统计缺失值
print(df.isna().sum())
print(df.isnull().sum())
print(df.isnull().sum())
数据结构概述
print(df.info())
#################################################
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 149116 entries, 0 to 149115
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 transaction_id 149116 non-null int64
1 transaction_date 149116 non-null datetime64[ns]
2 transaction_time 149116 non-null object
3 transaction_qty 149116 non-null int64
4 store_id 149116 non-null int64
5 store_location 149116 non-null object
6 product_id 149116 non-null int64
7 unit_price 149116 non-null float64
8 product_category 149116 non-null object
9 product_type 149116 non-null object
10 product_detail 149116 non-null object
dtypes: datetime64[ns](1), float64(1), int64(4), object(5)
memory usage: 12.5+ MB
这段代码 df.info()
用于展示 Pandas DataFrame df
中的信息概览。它显示了数据框的每一列的名称、非空值的数量、数据类型以及内存的使用情况。下面是对这段输出的详细中文解释:
-
DataFrame 结构:该 DataFrame 共包含 149116 条记录,从索引 0 到 149115。
-
列总数:数据集总共有 11 个列。
-
列的详情:
- transaction_id:交易ID,149116 个非空值,数据类型为整数(int64)。
- transaction_date:交易日期,149116 个非空值,数据类型为日期时间(datetime64[ns])。
- transaction_time:交易时间,149116 个非空值,数据类型为字符串(object)。
- transaction_qty:交易数量,149116 个非空值,数据类型为整数(int64)。
- store_id:商店ID,149116 个非空值,数据类型为整数(int64)。
- store_location:商店位置,149116 个非空值,数据类型为字符串(object)。
- product_id:产品ID,149116 个非空值,数据类型为整数(int64)。
- unit_price:单价,149116 个非空值,数据类型为浮点数(float64)。
- product_category:产品类别,149116 个非空值,数据类型为字符串(object)。
- produc