跟李沐学AI-动手学深度学习-线性回归+基础优化算法

本文深入浅出地讲解了线性回归的基本概念,如房价预测实例,线性模型的数学表达,以及如何通过平方损失衡量误差。重点介绍了梯度下降优化算法,包括批量大小和学习率的选择,以及小批量随机梯度下降在深度学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归( regression)是指⼀类为⼀个或多个⾃变量与因变量之间关系建模的⽅法。在⾃然科学和社会科学领域,回归经常⽤来表⽰输⼊和输出之间的关系。
在机器学习领域中的⼤多数任务通常都与预测(prediction)有关。当我们想预测⼀个数值时,就会涉及到 回归问题。常⻅的例⼦包括:预测价格(房屋、股票等)、预测住院时间(针对住院病⼈)、预测需求(零售 销量)等。但不是所有的预测都是回归问题。

目录

线性回归

eg:房价预测:一个简化模型

线性模型

衡量估计质量

 训练数据

参数学习

  显示解

总结

基础优化算法

梯度下降

选择学习率 

※小批量随机梯度下降

总结


线性回归

eg:房价预测:一个简化模型

假设1:影响房价的关键因素是卧室个数、卫生间个数和居住面积,记为x1,x2,x3。
假设2:成交价是关键因素的加权和。
y=w1x1+w2x2+w3x3。权重和偏差的实际值在后边决定。

线性模型

给定n维的输入 x=[x1,x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值