回归(
regression)是指⼀类为⼀个或多个⾃变量与因变量之间关系建模的⽅法。在⾃然科学和社会科学领域,回归经常⽤来表⽰输⼊和输出之间的关系。
在机器学习领域中的⼤多数任务通常都与预测(prediction)有关。当我们想预测⼀个数值时,就会涉及到 回归问题。常⻅的例⼦包括:预测价格(房屋、股票等)、预测住院时间(针对住院病⼈)、预测需求(零售 销量)等。但不是所有的预测都是回归问题。
目录
线性回归
eg:房价预测:一个简化模型
假设1:影响房价的关键因素是卧室个数、卫生间个数和居住面积,记为x1,x2,x3。
假设2:成交价是关键因素的加权和。
y=w1x1+w2x2+w3x3。权重和偏差的实际值在后边决定。
线性模型
给定n维的输入 x=[x1,x2