目录
1. 引言
在新冠疫情爆发以来,全球各国陆续公布了每日疫情数据,包括确诊病例、治愈人数、死亡人数等关键信息。这些数据不仅反映了疫情的发展趋势,也直接影响到各国政府的防控决策、经济复苏计划以及公众的出行安排。如何对这些大规模的COVID-19数据进行多维度、分层次的分析,从而更好地理解疫情的传播模式和影响因素,成为数据科学领域的重要研究方向。
本项目基于Python开发,旨在构建一个多维度数据透视系统,对全球COVID-19疫情数据进行分层分析。通过数据透视表(Pivot Table)的方式,我们可以按国家、地区、时间等不同维度对疫情数据进行交叉统计和分析,揭示不同层级数据之间的内在联系。项目中我们不仅关注各国疫情数据的总体变化,还将深入挖掘如日增长率、治愈率、死亡率等关键指标的动态变化,并利用图表进行直观展示。
为了应对大规模数据处理和高并发计算的需求,我们在项目中引入了GPU加速技术(利用cupy库)以提升数值计算效率,同时采用PyQt构建桌面GUI,实现数据的实时刷新和交互式展示。GUI部分不仅美观易用,而且具备良好的扩展性,便于后续增加更多数据分析模块和功能。
程序运行结果:
完整代码请添加微信,见文章底部