
人工智能实战教程—论文创新点
文章平均质量分 96
本专栏系统讲解人工智能核心技术,涵盖机器学习、深度学习、自然语言处理、计算机视觉等领域,配有实战项目与代码实现,助你从理论到应用全面掌握AI技能。紧跟前沿技术,深入解析人工智能热门模型,并分享TensorFlow、PyTorch等工具的使用技巧,适合初学者与开发者,也提供论文的创新点,立即订阅吧!
优惠券已抵扣
余额抵扣
还需支付
¥179.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
闲人编程
专注于算法设计与优化,深耕大数据处理与分析,精通信息安全技术。在分布式系统、机器学习以及密码学领域有丰富实践经验,热衷于分享技术干货和解决方案。致力于用技术创造价值,帮助更多开发者提升技能。欢迎一起探索技术的边界!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
新模型设计:AdaptiveHybridNet - 动态混合架构网络用于超轻量图像分类
在本博客中,我们详细介绍了 AdaptiveHybridNet 模型的设计背景、创新点及网络结构,通过混合卷积-注意力单元、梯度感知动态稀疏和跨层特征复用,实现了在极低参数量(≤300K)下的超轻量图像分类。模型采用 2x2 均值池化和 1x1 卷积作为熵引导预处理,将图像下采样至 96×96,后续四个堆叠的 HCA 单元依次提取特征,并通过跨层复用减少重复计算。分类头部分利用自适应空间池化和极简全连接层输出类别概率。原创 2025-03-09 07:00:00 · 146 阅读 · 0 评论 -
DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
动态稀疏计算路径:根据图像熵自适应选择计算模式,有效降低计算量;自适应通道缩放:动态调整每层通道数,兼顾效率与精度;熵感知知识蒸馏:利用教师模型针对高熵样本进行知识蒸馏,提升模型在困难样本上的表现;多项正则化与优化策略:结合 Prodigy 优化器、动态计算损失以及数据增强技术,确保模型在低功耗场景下稳定高效运行。原创 2025-03-03 08:00:00 · 872 阅读 · 0 评论 -
EcoAttnNet - 轻量级动态稀疏注意力网络用于边缘端图像分类
张量形状一致:从预处理、动态稀疏注意力块到全连接层,所有层的输入输出均经过反复验证。GPU计算全程开启:所有张量、模型及优化器均移动至GPU(若可用),保证高效运算。数据增强与剪枝策略:RandAugment与Cutout已集成,通道剪枝模块支持动态调整剪枝比例,确保训练过程中模型能够逐步收敛。教师模型蒸馏:通过hook获取ResNet-18的中间特征,并利用余弦相似度损失作为监督信号(此处为示例计算,可根据实际需求进一步调整)。评估与模型保存。原创 2025-02-23 09:00:00 · 483 阅读 · 0 评论 -
LiteSparse-Transformer (LST) for Lightweight Text Classification
本项目主要采用HuggingFace Datasets库加载AG News数据集。AG News数据集包含4个新闻类别,每篇文本经过分词、截断(长度为256)和填充处理后作为模型输入。分词与编码:利用预训练的分词器(如BertTokenizer或自定义简单分词器)将文本转换为token id序列。截断与填充:将每个文本截断或填充至固定长度256,确保输入张量形状一致。数据归一化:对文本中的部分特征(如词频)可进行归一化处理,进一步提升训练稳定性。原创 2025-02-24 08:00:00 · 1271 阅读 · 0 评论 -
新模型设计:Adaptive Sparse Capsule Transformer (ASCT) for Few-Shot Image Classification
ASCT 是一种结合稀疏动态路由、局部-全局注意力融合和元学习优化策略的深度学习模型。其核心思想是通过稀疏动态路由减少胶囊间的冗余连接,降低过拟合风险,同时通过局部-全局注意力融合模块协同捕捉局部细节与全局上下文,提升模型的表达能力。该模型特别适用于小样本学习任务,能够在极少量标注样本的情况下取得较高的分类准确率。matplotlibnumpyminiImageNet 数据集包含 100 个类别的 60000 张 84x84 彩色图像,每个类别有 600 张图像。原创 2025-02-21 19:51:23 · 819 阅读 · 0 评论 -
轻量级混合注意力网络(L-HAN)在移动端图像分类中的应用
在当前深度学习应用中,模型参数量和计算复杂度始终是制约应用于移动端或资源受限环境的重要因素。本文提出了一种全新的轻量级混合注意力网络(Lightweight Hybrid Attention Network, L-HAN),其核心思想在于利用深度可分离卷积、组卷积、通道混洗技术降低模型参数量,同时结合轻量级的通道和空间注意力机制,动态调整特征响应,提升模型对关键特征的捕捉能力。模型在保证较低参数量的同时,实现了较高的分类准确率和快速收敛,适合在各种内置数据集上进行训练和应用。原创 2025-02-27 07:30:00 · 96 阅读 · 0 评论 -
新模型设计:Dynamic Graph Contrastive Learning (DGCL) for Robust Community Detection in Social Networks
本项目采用 PyTorch Geometric 内置数据集作为实验对象,例如 Cora、Facebook 社交网络数据或 Reddit 社区数据。以 Cora 数据集为例,该数据集包含 2708 个节点,每个节点有 1433 维特征,边数约 5429 条,节点类别共 7 类。为更好地模拟实际社交网络中噪声干扰的情况,我们在数据预处理阶段对原始邻接矩阵进行随机噪声注入,随机翻转 10% 的边(即将 10% 的 0 变为 1,反之亦然),从而模拟动态拓扑与噪声干扰。数据下载与加载。原创 2025-02-27 07:00:00 · 185 阅读 · 0 评论 -
新模型设计:Symmetric Neural ODE with Attention (SNODE-Attn) for Time Series Forecasting
在本次实验中,我们以实际中常用的能源负荷数据、电力数据或ETTh1数据集为例进行实验。原始数据:每个样本为一段时间内的多维时间序列数据,形状为T×DT \times DT×D,其中TTT为时间步数,DDD为特征维度。预处理过程数据归一化:对每个特征按时间维度进行零均值单位方差归一化处理;动态时间切片:随机选择历史窗口长度Ttrain∈TminTmaxTtrain∈TminTmax以增强模型鲁棒性;原创 2025-02-20 08:00:00 · 697 阅读 · 0 评论 -
Meta-Attention Network (MAN) for Few-Shot Image Classification
本文详细介绍了如何利用 PyTorch 构建 Meta-Attention Network (MAN) 模型以应对小样本图像分类任务。通过引入动态元注意力模块,实现了对支持集关键局部特征的动态捕捉;利用原型网络计算类别原型和余弦相似度进行分类;并结合 MAML 框架进行元预训练,使模型在极少样本下也能快速适应新任务。进一步在第二阶段采用知识蒸馏机制,通过教师-学生架构有效压缩模型,降低计算复杂度,提高推理速度。原创 2025-02-25 07:30:00 · 287 阅读 · 0 评论 -
IBDNet:基于信息瓶颈驱动的深度网络在细粒度图像分类中的应用
本文详细介绍了IBDNet模型在细粒度图像分类任务中的设计与实现过程。通过引入信息瓶颈模块,模型能够在保证判别性信息的同时,有效压缩冗余特征;而自适应特征选择门控则进一步增强了局部细节的建模能力。混合优化策略和多种正则化手段的结合,使得IBDNet在CIFAR-100数据集上具有优异的分类性能,同时保持较低的参数量和计算开销,非常适合资源受限的实际应用场景。通过本博客,读者不仅可以深入理解信息瓶颈理论在深度学习中的应用,还可以参考完整代码实现,学习如何利用PyTorch构建高效且鲁棒的细粒度图像分类模型。原创 2025-02-25 07:00:00 · 372 阅读 · 0 评论 -
轻量化多分支卷积网络(LMBCN)——高效训练与快速收敛的新思路
本文采用的是Torchvision内置的CIFAR10数据集进行实验,尽管CIFAR10原始图像尺寸为32×32,但我们通过数据预处理将图像调整为224×224,并采用常见的归一化参数(均值和标准差分别为[0.485,0.456,0.406]和[0.229,0.224,0.225]),以模拟实际中高分辨率图像的输入环境。Resize:将图像调整为224×224大小。:随机水平翻转,增加数据多样性。ToTensor:将图像转换为Tensor,并归一化至[0,1]区间。Normalize。原创 2025-02-18 20:36:51 · 1253 阅读 · 0 评论 -
基于PyTorch实现的自适应注意力卷积网络(AACN)详解
本次实验中,我们选取了CIFAR-10数据集作为示例。CIFAR-10数据集包含10个类别,共60000张32×32的彩色图像。利用将原始图像尺寸调整为224×224。采用ToTensor()将图像转换为张量,并利用Normalize对图像数据进行归一化处理。此外,为了充分利用GPU加速计算,所有数据张量均在加载后转换至GPU设备。本文详细介绍了一种基于卷积神经网络和残差结构优化的全新单模型设计方案——自适应注意力卷积网络(AACN)。原创 2025-02-24 07:30:00 · 1433 阅读 · 0 评论 -
新模型:Dynamic Evolutionary Transformer (DET) for Text Classification
本文详细介绍了动态进化 Transformer (DET)的设计背景、创新点以及网络结构,展示了如何通过遗传算法实现模型结构动态调整,从而使模型能够自适应应对不同数据分布与任务复杂度。通过混合注意力机制的引入,模型既能捕捉长距离依赖,又能提取局部上下文信息;自适应正则化及梯度裁剪等措施确保了训练过程的稳定性。完整的 PyTorch 代码实现包含了数据预处理、模型定义、遗传算法优化、训练策略与评估流程,所有计算均在 GPU 上完成,并每隔一定周期输出指标图,同时将模型参数保存到本地,方便后续调优或部署。原创 2025-02-24 07:00:00 · 656 阅读 · 0 评论 -
新模型设计:Adaptive Depth Gated Residual Network (ADGRN) for CIFAR-10 分类
ADGRN 是一种结合自适应门控机制和残差网络(ResNet)的深度学习模型。其核心思想是通过门控模块动态调整网络深度,根据输入样本的复杂度自适应跳过部分残差块,从而在保持较高分类准确率的同时显著降低计算量。该模型特别适用于资源受限的环境,能够在保持较高分类准确率的同时显著降低计算复杂度。matplotlibnumpyCIFAR-10 数据集包含 10 个类别的 60000 张 32x32 彩色图像,每个类别有 6000 张图像。数据集分为 50000 张训练图像和 10000 张测试图像。原创 2025-02-17 21:28:44 · 1451 阅读 · 0 评论 -
基于自适应模糊控制的轻量级图像分类模型(AF-LiteNet)
AF-LiteNet 是一种结合自适应模糊控制机制(Adaptive Fuzzy Control)和轻量级卷积神经网络(LiteCNN)的深度学习模型。其核心思想是通过自适应模糊控制机制动态调整卷积核的权重,增强模型对噪声和复杂场景的适应能力,同时通过轻量级设计减少参数量和计算量。该模型特别适用于资源受限的环境,能够在保持较高分类准确率的同时显著降低计算复杂度。原创 2025-01-18 07:00:00 · 1141 阅读 · 0 评论 -
基于注意力机制和残差网络的轻量级图像分类模型(AR-LiteNet)
AR-LiteNet 是一种结合注意力机制(Attention Mechanism)和残差网络(Residual Network)的轻量级卷积神经网络。其核心思想是通过注意力机制增强模型对重要特征的关注,同时通过残差连接缓解梯度消失问题,从而在减少参数量的同时提升模型的表达能力。该模型特别适用于资源受限的环境,能够在保持较高分类准确率的同时显著降低计算复杂度。原创 2025-01-17 07:30:00 · 2379 阅读 · 0 评论 -
新模型设计:遗传算法优化的轻量级卷积神经网络(GA-LiteCNN)
GA-LiteCNN 是一种结合遗传算法(GA)和轻量级卷积神经网络(LiteCNN)的深度学习模型。其核心思想是通过遗传算法优化网络的关键超参数(如卷积核大小、滤波器数量等),从而在小样本学习任务中取得更好的性能。轻量级设计:减少网络参数和计算量,适合资源受限的环境。遗传算法优化:通过进化策略优化网络结构,避免手动调参的繁琐过程。matplotlibnumpyCIFAR-10 数据集包含 10 个类别的 60000 张 32x32 彩色图像,每个类别有 6000 张图像。原创 2025-01-11 21:31:58 · 959 阅读 · 0 评论 -
轻量级卷积神经网络 (OL-CNN)
然而,经典的 CNN 模型通常伴随着大量的参数和计算成本,这给实际部署带来了巨大的挑战,尤其是在资源有限的边缘设备或移动设备上。在本次研究中,我们提出了一种优化后的轻量级卷积神经网络 (Optimized Lightweight Convolutional Neural Network, 简称 OL-CNN),以应对高计算复杂度和高内存占用的问题。通过这些技术,OL-CNN 能够在资源受限的环境下达到较优的分类性能,同时适用于小型数据集和实时应用场景。池化层 2: 最大池化, 2x2, stride 2。原创 2025-01-17 07:00:00 · 1029 阅读 · 0 评论 -
新模型设计:Hybrid Quantum-Classical Neural Network (HQCNN) for Image Classification
Hybrid Quantum-Classical Neural Network (HQCNN) 是一种结合经典卷积神经网络和量子神经网络的混合模型。其核心思想是通过经典卷积层提取图像特征,并通过量子神经网络层增强特征表示能力。该模型在图像分类任务中表现优异,尤其适用于CIFAR-10等图像数据集。pennylane(用于量子计算)matplotlibnumpyCIFAR-10 数据集包含 10 个类别的 60000 张 32x32 彩色图像,每个类别有 6000 张图像。原创 2025-01-10 23:15:20 · 1213 阅读 · 0 评论 -
结合PCA、t-SNE/UMAP与聚类算法进行高维数据分析
降维技术旨在将高维数据映射到低维空间,同时保留数据的主要结构和信息。常用的降维技术包括主成分分析(PCA)、t-SNE和UMAP。聚类算法旨在将数据点划分为若干个簇,使得同一簇内的数据点相似,不同簇之间的数据点不相似。常用的聚类算法包括K-Means、层次聚类和DBSCAN。原创 2025-01-05 07:00:00 · 929 阅读 · 0 评论 -
稀疏编码 (Sparse Coding) 算法详解与PyTorch实现
稀疏编码(Sparse Coding)是一种无监督学习方法,旨在通过稀疏表示来捕捉数据的内在结构。稀疏编码的核心思想是将输入数据表示为少量基向量的线性组合,从而实现对数据的高效表示和压缩。稀疏编码广泛应用于图像处理、信号处理、神经科学等领域。MNIST数据集是一个经典的手写数字分类数据集,包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像,目标是识别图像中的数字(0-9)。原创 2025-01-09 07:30:00 · 1352 阅读 · 0 评论 -
对比学习 (Contrastive Learning) 算法详解与PyTorch实现
对比学习(Contrastive Learning)是一种自监督学习方法,通过最大化正样本对的相似度,最小化负样本对的相似度,使模型能够学习到有用的特征表示。对比学习的核心思想是利用数据的内在结构,设计预训练任务,使模型能够从无标签数据中学习到有用的特征表示。对比学习广泛应用于图像、文本、语音等领域。CIFAR-10数据集是一个经典的图像分类数据集,包含60000个32x32彩色图像,分为10个类别,每个类别有6000个图像。目标是识别图像中的物体类别。原创 2025-01-09 07:00:00 · 1684 阅读 · 0 评论 -
元学习 (Meta-Learning) 算法详解与PyTorch实现
元学习(Meta-Learning)是一种通过学习如何学习的方法,旨在使模型能够快速适应新任务。元学习的核心思想是通过在多个任务上进行训练,使模型能够在新任务上快速学习并表现良好。元学习广泛应用于Few-Shot Learning、迁移学习、强化学习等领域。Omniglot数据集是一个经典的手写字符数据集,包含50个字母表中的1623个字符,每个字符有20个样本。目标是识别图像中的字符类别。原创 2025-01-07 19:22:57 · 1368 阅读 · 0 评论 -
卷积神经网络 (CNN, Convolutional Neural Network) 算法详解与PyTorch实现
卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,广泛应用于图像处理、计算机视觉等领域。CNN通过卷积层、池化层和全连接层等结构,能够有效地提取图像中的特征,并进行分类、检测等任务。CIFAR-10数据集是一个经典的图像分类数据集,包含60000个32x32彩色图像,分为10个类别,每个类别有6000个图像。目标是识别图像中的物体类别。原创 2025-01-08 07:30:00 · 1111 阅读 · 0 评论 -
ARIMA模型 (AutoRegressive Integrated Moving Average) 算法详解与PyTorch实现
ARIMA(AutoRegressive Integrated Moving Average)模型是一种经典的时间序列预测模型,由Box和Jenkins于1970年提出。ARIMA模型结合了自回归(AR)、差分(I)和移动平均(MA)三个部分,能够有效地捕捉时间序列数据中的趋势和季节性。ARIMA广泛应用于经济、金融、气象等领域的时间序列预测。Air Passengers数据集是一个经典的时间序列数据集,包含1949年至1960年每月航空乘客数量的记录,目标是预测未来的乘客数量。原创 2025-01-08 07:00:00 · 1467 阅读 · 0 评论 -
新模型设计:Attention-ResNet for CIFAR-10 分类
Attention-ResNet 是一种结合了残差连接(Residual Connection)和通道注意力机制(Channel Attention Mechanism)的深度学习模型。其核心思想是通过残差连接缓解深度网络中的梯度消失问题,同时通过通道注意力机制增强模型对重要特征的捕捉能力。该模型在图像分类任务中表现优异,尤其适用于CIFAR-10等中小规模数据集。原创 2025-01-05 20:50:24 · 1188 阅读 · 0 评论 -
使用PyTorch实现基于稀疏编码的生成对抗网络(GAN)在CIFAR-10数据集上的应用
CIFAR-10数据集是一个广泛使用的图像分类数据集,包含10个类别的60000张32x32彩色图像,每个类别有6000张图像。数据集分为50000张训练图像和10000张测试图像。我们将使用这个数据集来训练我们的生成模型。原创 2025-01-04 15:10:00 · 1096 阅读 · 0 评论 -
基于 PyTorch 的 Stacking 模型实现:逻辑回归、SVM、KNN 与 XGBoost 的集成
我们选择MNIST 手写数字数据集作为实验数据集。MNIST 是一个经典的分类数据集,包含 60,000 个训练样本和 10,000 个测试样本。每个样本是一个 28x28 像素的灰度图像,对应一个 0-9 的数字标签。输入维度:28x28 = 784 维输出类别:10 类(0-9)数据分布:均匀分布我们将使用加载数据集,并进行标准化处理。第一层由多个基模型组成,每个基模型独立训练并生成预测结果。逻辑回归(Logistic Regression):一种线性模型,适用于二分类和多分类问题。原创 2025-01-07 07:30:00 · 1205 阅读 · 0 评论 -
BERT算法实现SQuAD问答系统任务和IMDB文本分类任务
BERT(Bidirectional Encoder Representations from Transformers)是由Google在2018年提出的一种基于Transformer的预训练语言模型。BERT通过双向上下文信息捕捉文本的语义,显著提升了自然语言处理(NLP)任务的性能。BERT的核心思想是通过掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)任务进行预训练,从而学习到通用的语言表示。原创 2025-01-03 14:50:15 · 1365 阅读 · 0 评论 -
Transformer算法实现IMDB文本分类任务和WMT14机器翻译任务
Transformer是一种基于自注意力机制(Self-Attention)的深度学习模型,由Vaswani等人在2017年提出。它在自然语言处理(NLP)任务中取得了显著的成功,尤其是在机器翻译、文本生成和文本分类等领域。Transformer的核心思想是完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),仅通过自注意力机制和多层感知机(MLP)来实现序列到序列的建模。IMDB数据集是一个经典的文本分类数据集,包含50,000条电影评论,其中25,000条用于训练,25,000条用于测试。原创 2025-01-03 21:08:58 · 1142 阅读 · 0 评论 -
生成对抗网络 (Generative Adversarial Network, GAN) 算法MNIST图像生成任务及CelebA图像超分辨率任务
生成对抗网络(Generative Adversarial Network, GAN)由Ian Goodfellow等人于2014年提出,是一种通过对抗学习生成数据的深度学习模型。GAN由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗训练共同提升性能。GAN广泛应用于图像生成、图像修复、风格迁移等领域。MNIST数据集是一个经典的手写数字分类数据集,包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像,目标是识别图像中的数字(0-9)。原创 2025-01-03 14:33:30 · 1349 阅读 · 0 评论 -
自组织映射 (Self-Organizing Map, SOM) 算法详解与PyTorch实现
自组织映射(Self-Organizing Map, SOM)是一种无监督学习算法,由Teuvo Kohonen于1982年提出。SOM通过将高维数据映射到低维空间(通常是二维网格),能够有效地进行数据聚类、降维和可视化。SOM广泛应用于图像处理、语音识别、数据挖掘等领域。Iris数据集是经典的分类数据集,包含150个样本,每个样本有4个特征,目标是将样本分为3类(Setosa, Versicolour, Virginica)。原创 2025-01-03 14:29:06 · 1464 阅读 · 0 评论 -
长短期记忆网络 (Long Short-Term Memory, LSTM) 算法详解与PyTorch实现
长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),由Hochreiter和Schmidhuber于1997年提出。LSTM通过引入门控机制,能够有效地捕捉时间序列数据中的长期依赖关系,广泛应用于时间序列预测、自然语言处理、语音识别等领域。Air Passengers数据集是一个经典的时间序列数据集,包含1949年至1960年每月航空乘客数量的记录,目标是预测未来的乘客数量。原创 2025-01-07 07:00:00 · 1152 阅读 · 0 评论 -
深度信念网络 (Deep Belief Network, DBN) 算法详解与PyTorch实现
深度信念网络(Deep Belief Network, DBN)是一种由多层受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)组成的生成模型,由Geoffrey Hinton等人于2006年提出。DBN通过逐层训练RBM来学习数据的层次化特征表示,广泛应用于分类、特征学习和生成任务。MNIST数据集是一个经典的手写数字分类数据集,包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像,目标是识别图像中的数字(0-9)。原创 2025-01-03 10:00:02 · 1288 阅读 · 0 评论 -
极限学习机 (Extreme Learning Machine, ELM) 算法详解与PyTorch实现
极限学习机(Extreme Learning Machine, ELM)是一种单隐层前馈神经网络(SLFN),由黄广斌教授于2006年提出。ELM的核心思想是随机初始化输入层到隐层的权重和偏置,并通过最小二乘法直接计算隐层到输出层的权重。ELM具有训练速度快、泛化性能好等优点,广泛应用于分类、回归和特征学习等任务。fx∑i1Lβigwi⋅xbifxi1∑Lβigwi⋅xbi其中,LLL是隐层神经元的数量,wiw_iw。原创 2025-01-03 09:31:13 · 1463 阅读 · 0 评论 -
高斯混合模型 (Gaussian Mixture Model, GMM) 算法详解与PyTorch实现
高斯混合模型(Gaussian Mixture Model, GMM)是一种概率模型,用于表示由多个高斯分布组成的混合分布。GMM广泛应用于聚类、密度估计和异常检测等任务。与K-Means等硬聚类算法不同,GMM是一种软聚类算法,能够为每个样本分配属于各个簇的概率。GMM由KKKpx∑k1KπkNx∣μkΣkpxk1∑KπkNx∣μkΣk其中,πk\pi_kπk是第kkk个高斯分布的混合系数,满足∑k1。原创 2025-01-06 07:30:00 · 1791 阅读 · 0 评论 -
多层感知机 (Multilayer Perceptron, MLP) 算法详解与PyTorch实现
多层感知机(Multilayer Perceptron, MLP)是一种经典的前馈神经网络,由输入层、隐藏层和输出层组成。MLP通过多层非线性变换将输入数据映射到输出空间,能够解决复杂的分类和回归问题。MLP是深度学习的基础模型之一,广泛应用于图像识别、自然语言处理等领域。MNIST数据集是一个经典的手写数字分类数据集,包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像,目标是识别图像中的数字(0-9)。原创 2025-01-06 07:00:00 · 1127 阅读 · 0 评论 -
AdaBoost算法详解与PyTorch实现
AdaBoost(Adaptive Boosting)是一种经典的集成学习算法,由Yoav Freund和Robert Schapire于1995年提出。AdaBoost通过组合多个弱分类器来构建一个强分类器,每个弱分类器都专注于纠正前一个分类器的错误。AdaBoost在分类和回归任务中表现出色,尤其是在处理高维数据和不平衡数据时,其性能优于许多其他算法。Breast Cancer数据集是一个经典的分类数据集,包含569个样本,每个样本有30个特征,目标是预测肿瘤是良性还是恶性。原创 2025-01-02 20:04:55 · 1445 阅读 · 0 评论 -
CatBoost算法详解与PyTorch实现
CatBoost(Categorical Boosting)是由Yandex开发的一种高效的梯度提升框架,专门针对类别特征进行了优化。CatBoost在处理类别特征时无需进行复杂的预处理(如One-Hot编码),并且能够自动处理缺失值。它在多个机器学习竞赛中表现出色,尤其是在处理高维类别数据时,其性能和准确性远超其他梯度提升算法。Titanic数据集是一个经典的分类数据集,包含891个样本,每个样本有11个特征,目标是预测乘客是否幸存。原创 2025-01-02 19:52:55 · 1448 阅读 · 0 评论 -
LightGBM算法详解与PyTorch实现
LightGBM(Light Gradient Boosting Machine)是由微软开发的一种高效的梯度提升框架。它基于决策树算法,专为大规模数据和高效计算而设计。LightGBM在多个机器学习竞赛中表现出色,尤其是在处理高维数据和大规模数据集时,其速度和准确性远超其他梯度提升算法。Iris数据集是经典的分类数据集,包含150个样本,每个样本有4个特征,目标是将样本分为3类(Setosa, Versicolour, Virginica)。原创 2025-01-02 19:32:23 · 1597 阅读 · 0 评论