粗读An Interactive Automation for Human Biliary Tree Diagnosis UsingComputer Vision

这篇博客介绍了采用医学图像分类方法诊断胆管健康状况的系统。通过DcCNN进行图像增强,结合未详细说明的分割技术,提取特征,并利用随机森林等多元分类方法,结果显示随机森林在胆管图像分析中表现最佳。文中还提及当前研究主要依赖CT图像进行胆管研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        一个诊断胆管部分健康情况的系统。采用的方法是医学图像分类最常见的四步走:增强,分割,提取特征,分类。

        增强用了去噪时常用的DcCNN,以及其他一些操作。分割部分没细说,提取出的特征见上图Feature Extraction部分。最后用了好几种方法各自独立进行分类,结果显示随机森林效果最好。

        让我有所收获的倒不是论文的方法,而是论文提到了胆管研究的一些现状,如目前大多数研究使用CT图像等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值