- 博客(1063)
- 资源 (2)
- 收藏
- 关注

原创 《多模态融合改进》目录一览 | 专栏介绍 :全网 第一份 完整的多模态改进教程,提供《多模态模型改进完整项目包》-开箱即用
在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单
2025-04-15 13:31:46
3199
6

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论
2025-03-10 22:00:24
8205
39

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件
在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。
2024-12-30 16:02:54
1923
2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学
2024-12-24 13:26:10
6158
3

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习
2024-12-03 20:39:23
11544
4

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 15:10:44
27779
152

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-10-11 12:33:51
7267
5

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。
2024-09-20 15:24:43
3408
1
原创 RT-DETR改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 RT-DETR 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-11 08:33:28
43
原创 YOLOv12改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv12 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity
2025-07-10 08:40:14
484
原创 YOLOv11改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv11 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-10 08:39:44
127
原创 YOLOv8改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv8 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-09 08:30:35
28
原创 YOLOv10改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv10 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-09 08:30:19
21
原创 【RT-DETR多模态融合改进】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
本文记录的是利用DCMPNet中的 MFM 模块改进 RT-DETR 的多模态融合部分。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅
2025-07-08 08:35:42
65
原创 RT-DETR改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 RT-DETR 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity
2025-07-08 08:29:40
247
1
原创 【RT-DETR多模态融合改进】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度融合精度
本文记录的是利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块改进 RT-DETR的多模态融合部分。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal
2025-07-07 16:49:02
244
原创 【RT-DETR多模态融合改进】| Arxiv 2024 DEYOLO:利用双增强机制和双向解耦聚焦模块,构建跨模态特征融合与单模态优化的完整框架
本文记录的是利用DEYOLO中的多模态融合模块改进 RT-DETR 的多模态融合部分。针对RGB和红外多模态目标检测任务设计了双特征增强机制,通过DECA(双语义增强通道权重分配模块)、DEPA(双空间增强像素权重分配模块)和双向解耦聚焦模块(Bi-direction Decoupled Focus)实现跨模态特征融合与单模态特征优化,有效解决多模态检测中的信息互补与干扰抑制问题。DEYOLO: Dual-Feature-Enhancement YOLO for Cross-Modality Object
2025-07-07 08:27:44
571
原创 【RT-DETR多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测
本文改进双HS-FPN颈部结构,融合RT-DETR中的多模态特征,以优化目标检测网络模型。借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。针对不同模态,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,提升在多模态检测任务中的准确性与稳定性。Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for A
2025-07-06 11:30:00
34
原创 【RT-DETR多模态融合改进】| 利用 Deformable Attention Transformer 可变形注意力 二次改进CGA Fusion 动态关注不同模态间的目标区域
本文记录的是利用DAT 模块改进 RT-DETR 的多模态融合部分。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。全称为,其作用在于通过可变形注意力机制,同时包含了数据依赖的注意力模式,克服了常见注意力方法存在的内存计算成本高、受无关区域影响以及数据不可知等问题。相比一些只提供固定注意力模式的方法,能更好地聚焦于不同模态间的相关区域并捕捉更有信息的特征。本文将其用于模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。Vision Transformer with Deformable
2025-07-06 10:00:00
30
原创 【RT-DETR多模态融合改进】| CAFM:通道 - 空间交叉注意力机制 | 动态捕捉跨模态特征的重要性,抑制冗余信息
本文记录的是利用 CAFM 模块改进 RT-DETR 的多模态目标检测网络模型。通过在特征融合阶段引入通道 - 空间交叉注意力机制,动态生成跨子网特征融合权重。该模块可自适应捕捉像素级与超像素级特征的语义关联,抑制无关背景干扰,实现高层语义与空间结构的深度交互与互补增强,为检测任务提供跨模态的精准特征表示,从而提升模型在不同模态场景下的分类准确性与鲁棒性。Attention Multihop Graph and Multiscale Convolutional Fusion Network for Hype
2025-07-05 09:15:40
39
原创 【RT-DETR多模态融合改进】| 利用 iRMB 倒置残差移动块二次改进CGA Fusion
本文记录的是利用iRMB 模块改进 RT-DETR 的多模态融合部分。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。的作用在于克服了常见模块无法同时吸收CNN 效率建模局部特征和利用Transformer 动态建模能力学习不同模态之间的长距离交互问题。相比一些复杂结构或多个混合模块的方法,能更好地权衡模型成本和精度。本文将其用于模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。Rethinking Mobile Block for Efficient Attention-based
2025-07-05 09:15:17
30
原创 【RT-DETR多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
TFAM模块通过时序信息驱动的注意力机制,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。
2025-07-04 08:30:21
52
原创 【RT-DETR多模态融合改进】| PSFM,深层语义融合模块 引入跨模态交叉注意力机制,动态建模不同模态特征的全局语义依赖关系
本文记录的是利用PSFM 模块改进 RT-DETR的多模态融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。该模块以可见光语义为引导、红外热信号为补充,通过双向注意力计算实现“语义类别”与“热目标位置”的精准对齐,同时捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语
2025-07-04 08:29:28
24
原创 【RT-DETR多模态融合改进】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现跨模态特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 RT-DETR 的多模态融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成跨模态特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-03 15:47:18
34
原创 【RT-DETR多模态融合改进】| CGA Fusion:内容引导的注意力融合模块,空间权重引导的多模态特征自适应融合
本文记录的是利用CGA Fusion 模块改进 RT-DETR 的多模态融合部分。(Content-Guided Attention Fusion)通过内容引导注意力生成空间权重,引导高低层特征的自适应融合。本文利用模块,通过内容引导注意力生成空间权重,自适应地融合两个模态的特征,在特征融合阶段实现跨模态语义对齐与噪声抑制,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。DEA-Net: Single image dehazing based on detail-enhan
2025-07-03 15:46:49
113
原创 【RT-DETR多模态融合改进】| CFT:跨模态融合Transformer | 利用Transformer的自注意力机制,解决跨模态融合中的长距离依赖和全局信息整合问题
本文记录的是利用 CFT 模块改进 RT-DETR 的多模态目标检测网络模型。的设计出发点在于解决传统多模态检测中跨模态特征融合不充分的问题,即当不同模态数据需协同检测时,基于CNN的方法因局部卷积的局限性,难以捕捉长距离依赖和全局模态间的互补信息,导致复杂光照、遮挡等场景下检测精度不足。本文利用模块,将多模态特征序列拼接后自动学习模态内与模态间的交互权重,在特征提取阶段整合全局上下文信息,增强对不同模态互补特征的利用能力,从而提升模型在多模态场景下的检测鲁棒性与准确性。Cross-Modality Fus
2025-07-02 09:11:13
539
1
原创 YOLOv10改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv10 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity
2025-07-02 08:23:32
25
原创 YOLOv8改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv8 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity o
2025-07-01 14:28:35
43
原创 YOLOv12改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv12 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion
2025-07-01 09:01:37
174
原创 YOLOv11改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv11 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity
2025-06-30 09:45:34
136
原创 【YOLOv11多模态融合改进】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文记录的是利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块改进 YOLOv11 的多模态融合部分。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-sca
2025-06-30 09:20:21
169
原创 YOLOv8改进策略【Neck】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
本文主要利用DCMPNet中的 MFM 模块优化 YOLOv8 的目标检测网络模型。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层的
2025-06-24 08:42:44
74
原创 我的创作纪念日
作为一名研究人员,在日常的学习过程中,我经常使用MarkDown来记录学习内容,而 CSDN 的创作格式规范和MarkDown完全一致,并且有各种格式提示,所以正好趁着暑假期间尝试在 CSDN 上进行记录,发现非常好上手,并且呈现出来的效果也是非常简洁大气。在与读者讨论问题过程中,我会认真倾听他们的观点和想法,按照他们思考问题的方式,吸收借鉴好的观点,学到了很多有用知识和经验,不断丰富自己的知识体系,也让自己在学习的道路上不断进步。每次复习之前写过的内容,我都会从不同的角度去思考,从而获得新的理解和感悟。
2025-06-24 08:40:17
177
原创 YOLOv10改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 YOLOv10 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal
2025-06-23 08:42:37
169
原创 YOLOv8改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 YOLOv8 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scale
2025-06-23 08:42:20
124
原创 RT-DETR改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 RT-DETR 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal
2025-06-22 10:30:00
219
原创 YOLOv12改进策略【Neck】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
本文主要利用DCMPNet中的 MFM 模块优化 YOLOv12 的目标检测网络模型。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层
2025-06-22 10:00:00
76
原创 YOLOv11改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 YOLOv11 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal
2025-06-21 08:47:21
203
原创 YOLOv10改进策略【Neck】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
本文主要利用DCMPNet中的 MFM 模块优化 YOLOv10 的目标检测网络模型。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层
2025-06-21 08:46:58
52
原创 YOLOv12改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 YOLOv12 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scal
2025-06-20 14:57:08
420
指数加权移动平均平滑-Python实现
2024-10-24
高斯滤波-Python实现
2024-10-24
Savitzky-Golay滤波-Python实现
2024-10-24
移动平均平滑算法-Python实现
2024-10-24
RT-DETR官方最新源码资源
2024-10-24
小波卷积论文:Wavelet Convolutions for Large Receptive Fields
2024-10-24
模型的剪枝和蒸馏,实现方法和步骤
2024-12-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人