【RT-DETR多模态融合改进】| 利用 Deformable Attention Transformer 可变形注意力 二次改进CGA Fusion 动态关注不同模态间的目标区域

一、本文介绍

本文记录的是利用DAT 模块改进 RT-DETR 的多模态融合部分。主要讲解如何利用一些现有的模块二次改进多模态的融合部分。

DAT全称为Deformable Attention Transformer,其作用在于通过可变形注意力机制,同时包含了数据依赖的注意力模式,克服了常见注意力方法存在的内存计算成本高、受无关区域影响以及数据不可知等问题。相比一些只提供固定注意力模式的方法,能更好地聚焦于不同模态间的相关区域并捕捉更有信息的特征。

本文将其用于CGA Fusion模块中并进行二次创新,更好地突出不同模态的重要特征,提升模型性能。


专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用

专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值