在音频处理领域,背景噪声是一个常见的问题。为了提高音频的质量,我们需要对音频进行降噪处理。本文将介绍如何使用 Python 实现音频降噪。
依赖库安装
在开始之前,我们需要安装以下依赖库:
- pydub:用于音频文件的读取和写入。
- numpy:用于数组和数值计算。
- noisereduce:用于音频降噪。
- matplotlib:用于绘制波形图。
使用以下命令安装依赖库:
pip install pydub numpy noisereduce matplotlib
安装 FFmpeg
FFmpeg 是一个强大的多媒体处理工具,pydub 库需要依赖它来处理音频文件。请按照以下步骤在 Windows 上安装 FFmpeg:
- 下载 FFmpeg:访问 FFmpeg 的官方网站。下载预编译的 FFmpeg 二进制文件。
- 解压文件:解压到一个目录,例如 C:\ffmpeg。
- 配置环境变量:将 FFmpeg 的 bin 目录添加到系统环境变量中,然后重启
- 验证安装:打开终端,输入命令
ffmpeg -version
,如果安装成功,将看到 FFmpeg 的版本信息输出。
对于m4a文件,可以使用FFmpeg将其转换为wav,再进行处理:
ffmpeg -i file.m4a file.wav
导入库
from pydub import AudioSegment
import numpy as np
from pathlib import Path
import noisereduce as nr
import matplotlib.pyplot as plt
设置参数和读取音频文件
# 设置音频文件路径
seq = "01"
data_folder = Path("data/")
file_to_open = data_folder / f"{
seq}.wav"
# 设置截取时间(秒)
time_beg = 10
time_end = 55
# 读取音频文件
audio = AudioSegment.from_file(file_to_open, format="wav")
# 打印音频信息
print(f"Channels: {
audio.channels}")
print(f"Frame rate: {
audio.frame_rate} Hz")
print(f"Duration: {
len(audio) / 1000.0} seconds")
将音频数据转换为 NumPy 数组
# 获取音频样本数据
raw_data = np.array(audio.get_array_of_samples())
# 处理立体声和单声道
if audio.channels == 2:
# 将立体声数据重塑为二维数组
raw_data = raw_data.reshape((-1, 2)