论文信息
题目:FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation
FedSemiDG:领域泛化的联邦半监督医学图像分割
作者:Zhipeng Deng, Zhe Xu, Tsuyoshi Isshiki, Yefeng Zheng
论文创新点
- 引入新的问题设置:论文首次提出了领域泛化的联邦半监督学习(FedSemiDG)问题设置,旨在解决多中心医学图像分割中的领域偏移问题。该设置允许在分布式环境中利用有限的标注数据和丰富的未标注数据,使得模型能够在未见过的领域中良好泛化。
- 提出泛化感知聚合(GAA)策略:论文提出了一种**泛化感知聚合(GAA)**策略,通过计算局