MIA 2025 | 基于深度学习的冠状动脉X光血管造影与光学相干断层扫描自动跨模态3D融合框架

论文信息

题目:AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT
基于深度学习的冠状动脉X光血管造影与光学相干断层扫描自动跨模态3D融合框架
作者:Chunming Li, Yuchuan Qiao, Wei Yu, Yingguang Li, Yankai Chen, Zehao Fan, Runguo Wei, Botao Yang, Zhiqing Wang, Xuesong Lu, Lianglong Chen, Carlos Collet, Miao Chu, Shengxian Tu

论文创新点

  1. 提出全新框架:论文提出AutoFOX这一全新的自动化框架,用于冠状动脉X光血管造影(XA)和光学相干断层扫描(OCT)的跨模态3D融合。该框架包括初始重建(IR)、配准(CR)和融合重建(FR)三个步骤,有效解决了现有血管3D对齐和融合方法的局限性。
  2. 设计多任务3D血管对齐模型:设计了名为TransCAN的多任务深度学习模型用于3D冠状动脉血管对齐。该模型利用动态时间规整(DTW)理论和Transformer架构,通过多个新颖模块整合侧支信息,解决了血管对齐中的错位挑战。
  3. 创新侧支管腔重建算法:采用一种创新的侧支管腔重建算法,克服了分叉处融合的挑战,增强了对分叉病变的评估,提升了融合模型在分叉处的精度,对冠状动脉血管血流动力学评估等任务具有较高的可行性。
  4. 定义形态学指标:利用配对的冠状动脉计算机断层扫描血管造影(CTA)数据作为参考标准,并定义多种形态学指标,为评估3D融合模型的定量精度提供了更准确、直接的方法,可有效衡量融合模型与CTA参考模型之间的形态学准确性。

摘要

冠状动脉疾病(CAD)是全球范围内导致死亡的主要原因。冠状动脉X光血管造影(XA)和光学相干断层扫描(OCT)的3D融合可提供互补信息,以更好地了解冠状动脉解剖结构和斑块形态。这通过实现精确的血流动力学和计算生理学评估,显著改善了CAD的诊断和预后。融合的挑战在于XA中的缩短效应和OCT回撤采集的不均匀性可能导致的潜在错位。此外,对主要分叉的重建在技术上要求较高。本文提出了一种自动化的3D融合框架AutoFOX,它由用于3D血管对齐的深度学习模型TransCAN组成。3D血管轮廓被当作顺序数据处理,其特征被提取并与分叉信息整合,通过多任务方式增强对齐效果。TransCAN在所有方法中展现出最高的对齐精度,沿血管序列的平均对齐误差为0.99±0.81毫米,在关键解剖位置仅为0.82±0.69毫米。所提出的AutoFOX框架独特地采用了先进的侧支管腔重建算法,以增强对分叉病变的评估。使用多中心数据集进行独立外部验证,并以配对的3D冠状动脉计算机断层血管造影(CTA)作为参考标准。作者提出了新的形态学指标来评估融合精度。实验表明,由AutoFOX生成的融合模型与CTA具有高度的形态一致性。AutoFOX框架能够对CAD进行自动且全面的评估,尤其是对分叉狭窄的准确评估,这对指导手术和优化治疗具有临床价值。

关键词

冠状动脉疾病;X光血管造影;光学相干断层扫描;基于深度学习的对齐;3D融合

一、引言

冠状动脉疾病(CAD)仍然是全球范围内导致死亡的主要原因(Martin等人,2024)。经皮冠状动脉介入治疗(PCI)是CAD的主要诊断和治疗选择,其中冠状动脉X光血管造影(XA)和光学相干断层扫描(OCT)被用于提供互补信息以指导PCI(Räber等人,2018)。如图1所示,XA能够直观地评估冠状动脉的整体解剖结构,而OCT则通过对血管壁内的管腔和斑块成分(如钙化、脂质和纤维)进行超分辨率成像,提供内部形态的详细评估(Bezerra等人,2009)。XA与OCT的融合提供了互补信息,增强了对冠状动脉解剖结构和斑块形态的理解,在CAD的诊断和预后中发挥着重要作用。一个理想的3D融合模型应准确提供主血管(MV)的形态细节以及侧支(SB)开口的解剖结构,因为这能够实现准确的血流动力学(如内皮剪切应力(ESS)Li等人,2018;Kweon等人,2018)和计算生理学评估(如血流储备分数(FFR)Wang等人,2018;Jiang等人,2021)。

开发自动化冠状动脉跨模态融合模型面临的主要挑战包括:(1)克服由XA缩短效应和OCT采集不均匀性导致的错位;(2)有效地重建主血管上的主要分叉;(3)消除中间阶段对人工干预的需求。

当前的跨模态对齐方法可大致分为“基于导丝”和“无导丝”两类。“基于导丝”的方法通过跟踪导丝上的成像探头等介入设备来标记对齐点,通常使用心电图触发的荧光透视技术与血管内成像导丝回撤相结合,以在X光下跟踪换能器(Wang等人,2013;Prasad等人,2016;Wu等人,2023),或者使用专门设计的系统来记录地标(Houissa等人,2019)。“基于导丝”的方法仅适用于在这些特定跟踪设置下获取的数据,并且可能会增加辐射剂量,在PCI工作流程中需要额外的手动操作或设备。相比之下,“无导丝”方法完全基于原始图像,无需改变导管实验室的标准工作流程。这些方法可以广泛应用于回顾性分析以前的数据。然而,现有的无导丝方法通常依赖于简单的等距映射(Wahle等人,2006;Tu等人,2011;Wang等人,2018;Toutouzas等人,2015;Andrikos等人,2017),而未利用血管轮廓的固有特征,这可能导致错位问题(Kweon等人,2018;Wu等人,2020;Poon等人,2023)。作者之前的工作(Qin等人,2021)对2D XA和OCT进行了两阶段对齐。然而,该研究受限于使用基于单一管腔直径的传统非刚性点匹配方法。当前的研究将之前的工作推进到3D对齐,在对齐算法上有关键进展,并实现了完全自动化的工作流程。此外,当前的融合方法仅限于特定的分叉,如左主干或右冠状动脉(Wu等人,2020,2023;Andrikos等人,2017),并且每个侧支都需要额外的成像,这限制了它们的临床应用。另外,所有已报道的框架都依赖于侧支的半自动重建(Li等人,2015;Kweon等人,2018;Li等人,2018)以及对齐标记的手动识别(Poon等人,2023)。自动化分析过程中侧支检测错误所带来的挑战尚未得到解决。最后,目前缺乏直接的定量指标来评估融合精度,因此仅使用间接的临床参数,如ESS和FFR,作为评估的替代指标。

为了克服上述限制,作者提出了一种新颖的、基于深度学习的无导丝框架,名为OCT和XA自动融合框架(AutoFOX),它包括初始重建(IR)、配准(CR)和融合重建(FR)三个完全自动化的过程,如图2所示。IR过程负责自动生成XA和OCT的基本冠状动脉解剖结构。在CR过程中,解决了血管对齐和管腔旋转配准的关键问题。作者提出了一种新颖的3D冠状动脉血管对齐网络,名为基于Transformer的冠状动脉血管对齐网络(TransCAN)。TransCAN将3D血管视为顺序数据,利用动态时间规整(DTW)(Müller,2007)理论和Transformer(Vaswani等人,2017)架构,以多任务方式深度整合侧支信息,有效克服错位问题。然后,校正两个血管之间的轴向旋转误差。最后,FR过程利用创新的侧支管腔重建算法生成最终的冠状动脉树融合模型。此外,作者定义了各种形态学指标,并使用配对的冠状动脉计算机断层血管造影(CTA)作为参考标准,这些指标将以更直接的方式定量评估融合模型的准确性。

总体而言,作者工作的贡献如下:

  • 作者引入了AutoFOX,这是一种用于OCT和XA冠状动脉跨模态3D融合的新型自动化框架。该框架包括初始重建(IR)、配准(CR)和融合重建(FR)。
  • 提出了一种用于3D冠状动脉血管对齐的多任务深度学习模型TransCAN。TransCAN利用DTW理论和Transformer架构来应对对齐挑战,同时通过几个新颖的模块整合侧支信息。
  • 采用了一种创新的侧支管腔重建算法来克服分叉处融合的挑战,从而增强对分叉病变的评估。
  • 作者使用配对的CTA数据作为参考标准,并定义了各种形态学指标,为评估3D融合模型的定量精度提供了更准确、直接的方法。

三、方法

为了实现自动化的跨模态融合,需要实施一系列必要的步骤。首先,必须分别重建每个图像模态的冠状动脉血管模型。然后,通过将重建的血管视为顺序数据来建立它们之间的对应关系。为了在序列之间建立最佳的纵向对应关系,作者将之前提出的两阶段(粗调和微调)对齐策略(Qin等人,2021)应用于3D对齐任务,并通过深度学习模型进一步增强它。接下来,确定血管之间的相对轴向旋转角度。最后,基于对齐结果在3D空间中完成融合模型的重建,并优化分叉结构。作者提出AutoFOX,通过三个完全自动化的过程,即初始重建(IR)、配准(CR)和融合重建(FR)来实现上述跨模型融合步骤。AutoFOX工作流程已在上海交通大学拥有的一款原型软件中实现,可用于重现本研究的数据。

3.1 初始重建

IR过程无需任何人工干预,自动从XA和OCT中生成基本的冠状动脉结构。将至少相隔25度的两张XA图像导入AngioPlus Core软件(版本V3,Pulse Medical,上海,中国),以获得主血管和侧支开口的分割。基于分割结果重建3D - XA模型(Çimen等人,2016)。AngioPlus还用于在OCT上生成管腔、斑块和中膜层的腔内结构,如图2(I)所示。3D - XA和3D - OCT的轮廓沿着血流方向逐层单调存储。每层具有相同数量的点,且索引值是连续的。血管长度的单位为毫米(mm),两张图像中血管相邻层之间的间距是均匀的。

3.2 配准:粗对齐

鉴于OCT成像通常仅捕获整个动脉的一段,而XA通常提供更完整的视图,粗对齐主要集中于自动准确地识别XA图像上相应的感兴趣区域(ROI)。利用两张图像的MV管腔直径和侧支信息,在滑动窗口内计算DTW距离。由于朴素DTW算法的时间复杂度较高,作者采用早期放弃(Early Abandoning)的概念(Rakthanmanon等人,2012)来提高效率。OCT序列沿着XA滑动,每一步生成一个与OCT层数相同的XA段。通过结合直径和侧支信息的误差累积来计算每个滑动窗口的滑动得分。最终,选择得分最高的滑动窗口作为ROI。

3.3 配准:TransCAN在微调对齐中

微调对齐旨在实现ROI内两个血管序列的逐层对齐。为此,提出了微调对齐模型TransCAN,并深度整合了侧支信息。通过对位置编码和注意力机制的优化,以及结合自监督学习和多任务框架,进一步确保了临床应用所需的对齐精度。TransCAN的输入数据包括来自XA和OCT的MV层和侧支实例,分别表示为SXS_XSXBXB_XBXSOS_OSOBOB_OBO。如图3所示,TransCAN中各模块的细节如下。

3.3.1 血管序列预处理

基于血管顺序数据的特点,作者提出三个预处理步骤,以标准化和简化计算。

首先,如图4(a)所示,对ROI内3D - XA血管的轮廓进行“拉直”。3D - XA中的空间曲率信息在OCT中不存在,因此该信息无法有助于XA和OCT之间的对齐。因此,作者沿着血管中心线采样特征,而不考虑其曲率,这减少了3D - XA和3D - OCT之间的数据分布差异。同时,特征格式的一致性允许使用共享的特征提取模块,与为每个模态使用独立模块相比,显著降低了计算成本。

其次,考虑到模型的固定大小输入,作者使用线性插值将所有血管序列均匀重采样到相同的层数LLL,并将每个血管层中的点重采样到相同的数量NcN_cNc。基于对数据集中平均血管长度的统计分析,LLLNcN_cNc的值分别选择为224和180。这样,OCT层间隔在重采样前后保持相似。

最后,作者观察到,让网络从堆叠的3D轮廓点集中自动学习隐式特征,而不是依赖于输入像轮廓面积这样的显式特征,能够更有效地克服错位问题。显式特征是直接可测量的属性,往往过于简化,可能无法完全捕捉血管的复杂性。相比之下,隐式特征是由深度学习模型提取的复杂高维潜在向量,揭示了超出人类视觉解释的隐藏结构模式。例如,如图4(a)所示,位于血管内不同位置的两个轮廓层pppddd,即使它们具有相同的面积值,也应根据其解剖和拓扑差异加以区分。由于血管在3D空间中具有方向顺序,使用顺序堆叠的3D轮廓作为输入保留了原始的解剖和拓扑信息。这增强了网络对血管连续性和解剖结构的理解,并减少了局部噪声的影响。根据经验和参数调整,本研究中堆叠的层数设置为5。

3.3.2 轮廓提取器和分支嵌入

提出轮廓提取器模块,用于从堆叠的3D血管轮廓层中提取高维特征表示,以用于下游任务,如图3(a)所示。来自XA和OCT的MV层SX={Px1,Px2,…,PxL}S_X = \{P_x^1, P_x^2, \ldots, P_x^L\}SX={Px1,Px2,,PxL}SO={P1o,P2o,…,PoL}S_O = \{P_1^o, P_2^o, \ldots, P_o^L\}SO={P1o,P2o,,PoL}首先逐层输入到轮廓提取器模块中,其中Pk=[(xi,yi,zi)]i=1:NcSlice kP_k = [(x_i, y_i, z_i)]_{i = 1:N_c}^{Slice \ k}Pk=[(xi,yi,zi)]i=1:NcSlice k表示血管序列中第kkk层的由总共NcN_cNc个点组成的3D轮廓。受2D空间中球坐标变换(SCT2D)(Yang等人,2020)的启发,作者开发了一种1D方法,称为SCT1D,它将PkP_kPk转换为极坐标下的1D点集[(ρi)]i=1:NCSlice k[(\rho_i)]_{i = 1:N_C}^{Slice \ k}[(ρi)]i=1:NCSlice k,其中ρ\rhoρ是到极点(xc,yc)(x_c, y_c)(xc,yc)的距离,如图4(c)所示。对于OCT,(xc,yc)(x_c, y_c)(xc,yc)是成像导管的中心,而对于XA,它是每个层轮廓的质心。受益于此,轮廓提取器可以设计为1D - CNN模块,这降低了计算成本和内存使用。

由于血管层垂直于ZZZ轴,作者使用层索引来代替zzz值,并将其作为绝对位置编码纳入。类似地,由于每层具有相等的点数NcN_cNc,点索引可以代替2D极坐标中的角度值。所有层的索引起始点与血管的侧线对齐,使模型能够学习到不变性,尽管存在小的偏移。经过SCT1D和轮廓提取器后,MV层数据从S∈RL×C×Nc×3S \in R^{L \times C \times N_c \times 3}SRL×C×Nc×3转换为S′∈RL×dS' \in R^{L \times d}SRL×d,其中ddd是特征向量长度,设置为64。

由于在此阶段侧支信息尚未得到充分利用,作者提出分支嵌入模块,以有效地将侧支特征整合到MV的特征序列中,并更好地表示不同侧支之间的相互作用范围。该模块使用1D高斯核将离散的侧支信息编码为连续表示,最终表示为与MV序列长度相同的嵌入向量ϕ(B)∈RL×1\phi(B) \in R^{L \times 1}ϕ(B)RL×1。作者认为纵向位置和开口面积是识别侧支最可靠的信息,因此离散的侧支信息可以表示为OCT的BO={(BI1o,BS1o),(BI2o,BS2o),…,(BIobn,BSobn)}B_O = \{(B I_1^o, B S_1^o), (B I_2^o, B S_2^o), \ldots, (B I_o^{bn}, B S_o^{bn})\}BO={(BI1o,BS1o),(BI2o,BS2o),,(BIobn,BSobn)}和XA的BX={(BIx1,BSx1),(BIx2,BSx2),…,(BIxbm,BSxbm)}B_X = \{(B I_x^1, B S_x^1), (B I_x^2, B S_x^2), \ldots, (B I_x^{bm}, B S_x^{bm})\}BX={(BIx1,BSx1),(BIx2,BSx2),,(BIxbm,BSxbm)},其中BIk∈[0,L]B I_k \in [0, L]BIk[0,L]是沿着MV对应于第kkk个侧支位置的层索引,BSkB S_kBSk表示第kkk个侧支开口的面积大小。这里,bnbnbnbmbmbm分别表示在OCT和XA中检测到的侧支数量。以OCT为例,BOB_OBO通过图6(a)中所示的式(1)和式(2)定义的过程生成ϕ(BO)\phi(B_O)ϕ(BO)

g(i)k=BSok×exp(−(i−BIok)22×σ2)g(i)_k = B S_o^k \times exp\left( - \frac{(i - B I_o^k)^2}{2 \times \sigma^2} \right)g(i)k=BSok×exp(2×σ2(iBIok)2)

ϕ(BO)[i]=max{g(i)1,g(i)2,…,g(i)bn}\phi(B_O)[i] = max\{g(i)_1, g(i)_2, \ldots, g(i)_{bn}\}ϕ(BO)[i]=max{g(i)1,g(i)2,,g(i)bn}

其中g(i)kg(i)_kg(i)k表示嵌入向量中第kkk个侧支生成的高斯分布,σ\sigmaσ表示高斯核的半径,作者将其设置为1,BIokB I_o^kBIokBSokB S_o^kBSok分别表示分布的均值和幅度。这种设计将高斯分布曲线定位在侧支开口的中心,并反映其面积大小。由于ϕ(B)\phi(B)ϕ(B)中第iii个元素的最终值受所有侧支贡献的影响,作者应用最大值操作,确保该值取决于贡献最大的侧支,防止直接求和可能产生的异常值。

3.3.3 位置编码和分支位置编码生成器

位置编码是克服在具有显著变形的对齐问题中鲁棒性较低的关键。原始序列中归一化的zzz值用作绝对位置编码Z={z~1,z~2,…,z~L}Z = \{\tilde{z}_1, \tilde{z}_2, \ldots, \tilde{z}_L\}Z={z~1,z~2,,z~L},并在每个Transformer编码器层的开头应用,以确保排列方差。此外,相对位置编码强调血管对齐中的近似平移等变性,调整来自粗对齐或缩短效应的“平移”误差。

E=F[concat(χ,ϕ(B)χ)]E = \mathcal{F}[concat(\chi, \phi(B)\chi)]E=F[concat(χ,ϕ(B)χ)]

受PEG(Chu等人,2021)的启发,作者提出了分支位置编码生成器(BPEG)。第一个Transformer编码器的输出表示为χ∈RL×d\chi \in R^{L \times d}χRL×d,BPEG的目的是将χ\chiχϕ(B)\phi(B)ϕ(B)相结合,动态生成相对位置编码EEE。BPEG主要包括两个步骤,如式(3)和图5所示。首先,通过在ϕ(B)\phi(B)ϕ(B)χ\chiχ之间执行元素乘法,然后连接形成新的特征χ′∈RL×d×2\chi' \in R^{L \times d \times 2}χRL×d×2,实现侧支和主支信息的融合。接下来,使用函数F(⋅)\mathcal{F}(\cdot)F()χ′\chi'χ中学习上下文信息,并将其映射到E∈RL×dE \in R^{L \times d}ERL×d。函数F(⋅)\mathcal{F}(\cdot)F()包括一个展平操作,然后是一个核大小为h×1h \times 1h×1的1D深度可分离卷积(Chollet,2017)。在实验中,作者发现将hhh设置为9可在局部感受野大小和计算成本之间提供最佳平衡。

BPEG放置在第一个Transformer编码器之后,这样做的好处是,在第一个编码器之后,BPEG可以利用模型捕获的全局上下文信息动态生成EEE(Chu等人,2021)。因此,EEE将通过加法操作与主支特征相结合,将更有效的特征传输到后续编码器和交叉注意力计算中。

3.3.4 注意力机制

TransCAN利用自注意力机制有效地学习血管序列内的动态相关性和复杂模式,并使用交叉注意力机制促进XA和OCT之间的信息交互。然而,由于血管序列的独特特征,交叉注意力中的密集计算是不必要的。相反,将计算集中在更相关的区域可以显著降低计算复杂度,并将过拟合风险降至最低(Huang等人,2019)。因此,作者设计并纳入了一种名为滑动窗口加侧支位置(SPSP) - 注意力的稀疏注意力机制。

血管序列的一个主要特征是其严格的单调性。尤其是在粗对齐之后,计算相距太远的层之间的相关性是不必要的。因此,使用滑动窗口注意力(Beltagy等人,2020)可以有效地提高计算效率。此外,作者将侧支视为信息交互的关键区域。基于此,作者通过ϕ(BX)\phi(B_X)ϕ(BX)ϕ(BO)\phi(B_O)ϕ(BO)的外积设计了ϕ(BXO)∈RL×L\phi(B_{XO}) \in R^{L \times L}ϕ(BXO)RL×L的侧支位置注意力,并将其二值化为注意力掩码,如图6(b)所示。这使得侧支区域能够为注意力分数计算做出贡献,较大的侧支涉及更多的特征层。最后,作者将这两个组件组合成SPSP - 注意力掩码SP∈RL×LSP \in R^{L \times L}SPRL×L(图6(c))。这种方法确保了重要特征之间相关性的计算,同时将计算复杂度从O(L2)O(L^2)O(L2)降低到大约O(Lw)O(Lw)O(Lw),其中www是窗口大小,设置为48。

ATTNSP(QX,KO,VO)=softmax(QXKOT⋅SP)VOATTN_{SP}(Q_X, K_O, V_O) = softmax (Q_X K_O^T \cdot SP) V_OATTNSP(QX,KO,VO)=softmax(QXKOTSP)VO

对于来自XA的特征序列,基于SPSP - 注意力的交叉注意力计算过程如式(4)所示。这里,QXQ_XQX是XA特征线性变换后的查询函数,KOK_OKOVOV_OVO分别是OCT特征线性变换后的键值函数。

3.3.5 侧支匹配子任务模块

为了消除血管之间的轴向旋转误差,通常使用匹配的侧支来计算相对角度。然而,IR中的误检和漏检可能导致不同模态中检测到的侧支数量不一致,使得直接的一对一匹配不可靠。鉴于对齐任务和侧支匹配任务可以相互补充,设计了一个辅助子任务,即侧支匹配(SB - Matching),以加强正确匹配侧支处的特征相关性。

首先,作者从主TransCAN网络获得XA和OCT的输出,分别表示为θ(X)∈RL×d\theta(X) \in R^{L \times d}θ(X)RL×dθ(O)∈RL×d\theta(O) \in R^{L \times d}θ(O)RL×d。接下来,如图3(c)所示,从这些输出中选择与侧支对应的特征层用于侧支匹配。ϕ(B)\phi(B)ϕ(B)的二值化掩码可用于确定这些侧支特征层的位置和数量,如图6(a)所示。每个侧支最终由所选多层特征的平均值表示。随后,作者将侧支匹配公式化为一个二分类任务,并基于余弦相似性构建侧支成本图AB∈Rbm×bnA_B \in R^{bm \times bn}ABRbm×bn(式(5))。成本图ABA_BAB衡量从两种模态导出的侧支特征之间的空间相似性,归一化到[0, 1]范围。侧支匹配关系的二值化真实值(GT)G∈Rbm×bnG \in R^{bm \times bn}GRbm×bn可以从对齐注释中构建。因此,作者可以使用交叉熵HB(⋅)H_B(\cdot)HB()计算ABA_BABGGG之间的差异,如式(6)所示。

ABij=12[ΘˉXi⋅(ΘˉOj)T∥ΘˉXi∥∥ΘˉOj∥+1]A_{B_{ij}} = \frac{1}{2} \left[ \frac{\bar{\Theta}_X^i \cdot (\bar{\Theta}_O^j)^T}{\|\bar{\Theta}_X^i\| \|\bar{\Theta}_O^j\|} + 1 \right]ABij=21[ΘˉXi∥∥ΘˉOjΘˉXi(ΘˉOj)T+1]

HB(AB,G)=1bm×bn∑i=1bm∑j=1bn[ABij⋅log(δ(Gij))+(1−ABij)⋅log(1−δ(Gij))]H_B(A_B, G) = \frac{1}{bm \times bn} \sum_{i = 1}^{bm} \sum_{j = 1}^{bn} \left[ A_{B_{ij}} \cdot log(\delta(G_{ij})) + (1 - A_{B_{ij}}) \cdot log(1 - \delta(G_{ij})) \right]HB(AB,G)=bm×bn1i=1bmj=1bn[ABijlog(δ(Gij))+(1ABij)log(1δ(Gij))]

其中ΘˉXi∈R1×d\bar{\Theta}_X^i \in R^{1 \times d}ΘˉXiR1×dΘˉOj∈R1×d\bar{\Theta}_O^j \in R^{1 \times d}ΘˉOjR1×d分别表示θ(X)\theta(X)θ(X)中第iii个侧支位置和θ(O)\theta(O)θ(O)中第jjj个侧支位置的平均特征。δ\deltaδ表示sigmoid函数。ABA_BAB的得分范围在0到1之间。

3.3.6 与DTWs的对齐

DTW算法用于生成血管ROI内最终的逐层对齐结果。来自TransCAN的输出θ(X)\theta(X)θ(X)θ(O)\theta(O)θ(O)可以动态地以余弦相似性的形式生成DTW的成本图AM∈RL×LA_M \in R^{L \times L}AMRL×L,如式(7)所定义。AMA_MAM中的值归一化到[0, 1],以反映XA和OCT不同层之间的相似性,它们的特征越接近,得分越低。

AM=12[1−θ(X)⋅θ(O)T∥θ(X)∥∥θ(O)∥]A_M = \frac{1}{2} \left[ 1 - \frac{\theta(X) \cdot \theta(O)^T}{\|\theta(X)\| \|\theta(O)\|} \right]AM=21[1θ(X)∥∥θ(O)θ(X)θ(O)T]

minγ{a1,a2,…,an}=−γlog∑i=1nexp(−aiγ)min_{\gamma}\{a_1, a_2, \ldots, a_n\} = - \gamma log \sum_{i = 1}^{n} exp\left( - \frac{a_i}{\gamma} \right)minγ{a1,a2,,an}=γlogi=1nexp(γai)

μ(i,j)=AMij+minγ{μ(i,j−1),μ(i−1,j),μ(i−1,j−1)}\mu(i, j) = A_{M_{ij}} + min_{\gamma}\{\mu(i, j - 1), \mu(i - 1, j), \mu(i - 1, j - 1)\}μ(i,j)=AMij+minγ{μ(i,j1),μ(i1,j),μ(i1,j1)}

DTWγ(X,O)=μ(L,L)DTW_{\gamma}(X, O) = \mu(L, L)DTWγ(X,O)=μ(L,L)

软DTW用式(8)中的平滑minγmin_{\gamma}minγ替换DTW中的离散minminmin运算符,其中γ\gammaγ是平滑参数。软DTW根据式(9)中的规则在AMA_MAM内生成从(0,0)到(L,L)(L, L)(L,L)的最优动态路径,并最终根据式(10)计算总成本DTWγ(X,O)DTW_{\gamma}(X, O)DTWγ(X,O)。这种端到端模式称为softTransCAN,而整合朴素DTW的模式为了区分命名为nTransCAN。

3.3.7 损失函数

为了通过监督学习确保成本图AMA_MAM生成的动态路径更准确,作者设计了一个轮廓相似性评估(CSA)单元来计算TransCAN的损失函数。

首先,为了确保成本图AMA_MAM中的信息准确反映θ(X)\theta(X)θ(X)θ(O)\theta(O)θ(O)之间的相似性,作者以双边界形式(Lin等人,2015)定义交叉对齐损失函数LCS(X,O)L_{CS}(X, O)LCS(X,O),如式(11)所示。在这种形式中,正确对应的血管层被视为正样本对,将在特征空间中拉近,而不对应的则被视为负样本对,将被推开。注释的微调对齐可以表示为图7(b)中所示的GT交叉对齐路径。然而,基于此路径构建的正样本对过于稀疏。因此,作者应用以该路径为中心的高斯核来生成GT交叉对齐矩阵M∈RL×LM \in R^{L \times L}MRL×L,如图7(c)所示。

其次,考虑到血管本身的先验信息,层之间的相关性应与其距离成反比。因此,图7(a)中所示的自对齐矩阵MD∈RL×LM_D \in R^{L \times L}MDRL×L符合沿矩阵对角线的高斯分布衰减。作者采用自监督学习(Haresh等人,2021)分别计算θ(X)\theta(X)θ(X)θ(O)\theta(O)θ(O)的自对齐损失LCS(X,X)L_{CS}(X, X)LCS(X,X)LCS(O,O)L_{CS}(O, O)LCS(O,O)。它们与式(11)中的定义类似,不同之处在于它们使用MDM_DMD来构建样本对,指导从自外积计算的成本图的生成。最终,作者将它们组合成轮廓相似性评估损失函数LCSAL_{CSA}LCSA,定义如式(12)所示。

Lcs(X,O)=1L2∑i=1L∑j=1L[Mij′⋅max(0,mpos−AM)+(1−Mij′)⋅max(0,AM−mneg)]L_{cs}(X, O) = \frac{1}{L^2} \sum_{i = 1}^{L} \sum_{j = 1}^{L} \left[ M'_{ij} \cdot max(0, m_{pos} - A_M) + (1 - M'_{ij}) \cdot max(0, A_M - m_{neg}) \right]Lcs(X,O)=L21i=1Lj=1L[Mijmax(0,mposAM)+(1Mij)max(0,AMmneg)]

LCSA=LCS(X,X)+LCS(O,O)+LCS(X,O)L_{CSA} = L_{CS}(X, X) + L_{CS}(O, O) + L_{CS}(X, O)LCSA=LCS(X,X)+LCS(O,O)+LCS(X,O)

其中这里的σ\sigmaσ设置为0.5,mposm_{pos}mposmnegm_{neg}mneg分别设置为正样本和负样本的边界值,指导模型区分正确和错误识别的样本。为了确保训练稳定性,mposm_{pos}mposmnegm_{neg}mneg分别设置为0.98和0.02,与使用1和0相比,这被证明更有效(Lin等人,2015)。用于构建MMMMDM_DMD的高斯核的幅度为1.0,标准差为0.5。

随后,使用HB(⋅)H_B(\cdot)HB()构建侧支匹配损失LBML_{BM}LBM,并在式(13)中定义。它用于指导侧支匹配子任务,并间接辅助主要任务。同时,在softTransCAN模式中使用软DTW损失来指导最优动态路径的生成。最后,总损失LTotalL_{Total}LTotalLCSAL_{CSA}LCSALBML_{BM}LBM和软DTW损失组成(式(14))。

LBM=−HB(AB,G)L_{BM} = - H_B(A_B, G)LBM=HB(AB,G)

LTotal=λ1LCSA+λ2LBM+λ3DTWγ(X,O)L_{Total} = \lambda_1 L_{CSA} + \lambda_2 L_{BM} + \lambda_3 DTW_{\gamma}(X, O)LTotal=λ1LCSA+λ2LBM+λ3DTWγ(X,O)

其中λ1\lambda_1λ1λ2\lambda_2λ2λ3\lambda_3λ3分别选择为1、0.2和0.01,以确保不同损失值处于相似的数量级。对于nTransCAN模式,λ3\lambda_3λ3设置为0。

3.4 配准:管腔旋转配准

在完成粗调和微调对齐阶段后,作者仅获得了两种血管层之间的精确对应关系,但它们在3D空间中的相对旋转角度仍然未知。因此,作者设计了一个管腔旋转配准阶段,主要利用侧支开口方位角和轮廓之间的相似性。

已知对齐和3D - XA中心线的空间法向量,作者可以使用仿射变换矩阵将OCT层变换到3D - XA空间。同时,根据侧支的正确匹配关系,作者计算第iii个侧支对BXiB_X^iBXiBOiB_O^iBOi相对于轮廓中心的方位角差,记为角度Δi\Delta_iΔi,第(i+1)(i + 1)(i+1)个侧支对的方位角差记为角度Δi+1\Delta_{i + 1}Δi+1。因此,两对侧支之间的层根据(Δi−Δi+1)/N(\Delta_i - \Delta_{i + 1}) / N(ΔiΔi+1)/N的线性规则变化,其中NNN是两对侧支之间的层数。从10°的自旋转间隔中选择具有最大IoUIoUIoU的每个层的最佳微调角度。

3.5 融合重建

基于CR的结果,将OCT主血管管腔准确映射到3D - XA冠状动脉树模型上。随后,FR细化侧支管腔的重建,显著提高分叉处的融合精度。这种增强不仅改善了可视化效果,还能够对分叉病变进行更准确的定量评估。OCT分支管腔的原始分割结果垂直于ZZZ轴,不适合直接与XA分支对齐。通过估计中心线的轨迹并计算法向量,作者创建了垂直于中心线的新层。然而,由于在重建过程中轮廓延伸到MV管腔中存在“未知边界”,这种方法引入了一个未知的扇形区域,如图8(a)所示。

作者采用基于轮廓插值的管腔重建方法。以最后一个已知的分支轮廓层IsI_sIs为起点,以分支上方MV轮廓的一个层IeI_eIe为终点,从侧支中心线到ZZZ轴拟合一条贝塞尔曲线。然后,如图8(b)中的过程所示,以步长(ρs−ρe)/N(\rho_s - \rho_e) / N(ρsρe)/N线性增长轮廓点,形成完整的插值管腔,其中NNN是插值次数,ρs\rho_sρsρe\rho_eρe分别对应起点和终点的半径。在这些位置使用等距映射进行对齐。最后,如图8(c)和8(d)所示,作者可以修复未知扇形区域并完成分叉开口处的融合。动脉的细化重建能够实现准确的血流动力学评估,如内皮剪切应力和血流储备分数。

4. 实验与结果

4.1 数据集

使用来自实际临床实践且相互无重叠的数据,对内评估 TransCAN 的对齐精度,对外评估融合模型的形态精度,以此来评价 AutoFOX 的性能。

  • 为了开发和评估用于血管对齐的 TransCAN,使用了来自核心实验室(上海交通大学 Med-X 研究院 CardHemo)的 278 名患者的配对 XA 和 OCT 图像。核心实验室经验丰富的分析师使用 AngioPlus Core 软件(版本 V3,中国上海 Pulse Medical 公司)进行数据标注,生成了 55,104 个对齐对。在血管层面,将数据集按 7:1:2 的比例划分为训练集、验证集和测试集。遵循标准做法,使用训练数据学习模型参数,基于验证数据调整超参数并选择模型。测试数据仅在模型最终确定后用于评估模型。在测试数据上报告模型性能和消融研究结果。
  • 为了对 AutoFOX 融合模型的形态精度进行外部验证,使用了一个独立的数据集,该数据集包含 67 名患者的冠状动脉 CTA、XA 和 OCT 图像。数据由两个站点提供:比利时阿尔斯特的 OLV 诊所(站点 1,50 名患者)和中国福州的福建医科大学附属协和医院(站点 2,16 名患者)。这两家医院的伦理委员会批准了对这些数据集的回顾性分析。患者提供了书面知情同意书。CTA 模型用作形态评估的参考标准,由 CtaPlus Core 软件(版本 V2,中国上海 Pulse Medical 公司)自动生成。

在大多数(86.57%)研究人群中,不同图像模态采集之间的时间间隔在 3 个月内,其余的小于 6 个月。所有图像均在任何冠状动脉介入治疗之前采集。此外,分析的 CTA 和 XA 图像与舒张末期或收缩末期同步,以确保时间同步。

4.2 实验设置与评估指标

4.2.1 实验设置

TransCAN 由 PyTorch 1.12 实现,在 Ubuntu 20.04 环境下的 NVIDIA A100 Core GPU 80G 上执行。使用 Adam 作为优化器,在同步训练中,主对齐任务的初始学习率为 0.001,SB - 匹配子任务的初始学习率为 0.02。学习率每 10 个 epoch 以 0.95 的速率衰减。AutoFOX 中的 3D 重建基于 C++,利用了 ITK 5.3.0 和 VTK 9.2.6 库。

4.2.2 对齐指标

为了评估对齐精度,从粗对齐、细对齐和侧支匹配三个方面设计了对齐指标。这些指标包括平均距离误差值和精度值。

对于 3D - OCT 的每个切片及其在 3D - XA 中对应的切片,计算 TransCAN 的预测与标注(GT)之间的绝对距离差。粗对齐误差 εCA\varepsilon_{CA}εCA 是感兴趣区域(ROI)端点的平均距离。对于细对齐,基于之前的工作(Qin 等人,2021),确定了临床分析中特别感兴趣的一些关键解剖位置。除了侧支血管(SBs)外,这些位置还包括狭窄病变、严重缩短位置、动脉瘤等,并计算它们的平均误差 εFAK\varepsilon_{FAK}εFAK。此外,将评估扩展到 ROI 内的整个序列,并计算平均误差 εFA\varepsilon_{FA}εFA

为了评估对齐性能,根据临床要求设置不同的阈值 τ\tauτ:1.0 毫米、1.5 毫米和 2.0 毫米。当对应对之间的误差小于设定的阈值 τ\tauτ 时,认为对齐成功。精度通过确定正确对齐对(误差 ≤τ\leq \tauτ 的对)相对于评估对总数的比例来计算,粗对齐的精度记为 PCAP_{CA}PCA,在整个序列水平和关键临床解剖位置的精修对齐精度分别记为 PFAP_{FA}PFAPFAKP_{FAK}PFAK。此外,为了评估 SB - 匹配模块的准确性,计算正确匹配的 OCT SBs 占 OCT SBs 总数的比例,记为 PBMP_{BM}PBM

4.2.3 对齐比较方法

由于已报道的 3D 血管对齐方法缺乏多样性,因此从类似任务中改编了几种方法进行比较。选择的对齐比较方法主要可分为三组。第一组包括基于血管直径曲线的传统算法,例如广泛使用的等距映射(EM)和点云配准算法 TPS - RPM(Chui 和 Rangarajan,2003),后者通过估计两条直径曲线之间的非刚性变形来实现对齐。此外,还包括 DTW 系列,包括朴素 DTW(Bork 等人,2013)、加权导数 DTW(wdDTW)(Jeong 等人,2011)和形状 DTW(Zhao 和 Itti,2018)。

在第二组中,从视频到视频任务中改编了几种最先进的方法进行比较,包括 TCC(Dwibedi 等人,2019)、LAV(Haresh 等人,2021)和 VAVA(Liu 等人,2022)。由于这些方法中的视频编码器不能直接应用于研究的血管数据维度,因此使用了本研究中的轮廓提取器模块,结合两种适合处理序列信息的深度学习主干网络——LSTM(Yu 等人,2019)和 Transformer(Vaswani 等人,2017),来替代原始方法中的视频嵌入提取过程。第三组由提出的两种模型模式 nTransCAN 和 softTransCAN 组成。

4.2.4 形态学指标

为了定量测量融合模型与 CTA 参考模型的形态精度,以 SBs 作为主要标记并设计了形态学指标,如图 9 所示并定义如下:

  • 近端分叉角(PBA)和远端分叉角(DBA):PBA 和 DBA 分别用于表示分叉处 SB 与 MV 近端或远端之间的角度(Wang 等人,2023)。如图 9(b)和(c)所示,为了测量分叉角的程度,选择中心线 10 毫米范围内的所有点参与特定方向向量的计算。这些点形成子向量 V1,V2,⋯ ,VnV_1, V_2, \cdots, V_nV1,V2,,Vn,并使用公式(15)计算指向 PPP 的平均方向向量 Vp‾\overline{V_p}Vp
    Vp‾=1n(∣V1∣+∣V2∣+∣V3∣+⋯+∣Vn∣)\overline{V_p} = \frac{1}{n(|V_1| + |V_2| + |V_3| + \cdots + |V_n|)}Vp=n(V1+V2+V3++Vn)1
    PBA 对于理解血液如何从 MV 分流到 SBs 至关重要,这是评估血流动力学变化的关键,而 DBA 表示分支血管之间的血流分布以及血管壁上潜在的应力分布。
  • 分支旋转角(BRA):BRA 计算给定 SB 相对于第一分支(如左主干血管)的方向。用于计算从 SB 所在切片中心到其开口位置的点的方向向量。BRA 可以反映旋转配准算法的准确性。
  • 分支开口面积(BOA)和分支最小管腔面积(BMLA):BOA 测量 SB 开口处 1.0 毫米段内的平均面积,而 BMLA 确定 3 毫米段内的最小面积。BOA 和 BMLA 都反映了 SB 管腔重建的准确性,并有助于评估分支狭窄的严重程度。

计算 AutoFOX 融合模型与配对 CTA 参考模型之间上述指标的误差,即 εDBA\varepsilon_{DBA}εDBAεPBA\varepsilon_{PBA}εPBAεBRA\varepsilon_{BRA}εBRAεBOA\varepsilon_{BOA}εBOAεBMLA\varepsilon_{BMLA}εBMLA,以评估形态精度。鉴于 CTA 的 3D 断层特性,将其用作评估侧支结构的参考,特别是用于评估分叉角。考虑到 CTA 在管腔测量分辨率方面的潜在问题,同时进行了绝对值和相关性分析,以评估 3D 空间中管腔结构的一致性。

4.3 结果分析

4.3.1 TransCAN 的对齐性能

表 1 总结了 nTransCAN 和 softTransCAN 在测试集上的对齐结果比较。图 10 给出了一些对齐结果示例,图 11 展示了不同对齐方法对融合模型在局灶性病变、弥漫性病变和动脉瘤方面的影响。


在测试集中,εCA\varepsilon_{CA}εCA 为 1.34 ± 1.12 毫米,在 τ\tauτ = 1.5 毫米时精度为 80.49%,并且观察到这些误差对细对齐过程没有显著影响。nTransCAN 和 softTransCAN 都展示出较高的细对齐精度,在整个序列上,εFA\varepsilon_{FA}εFA 分别为 0.99 ± 0.81 毫米和 1.09 ± 0.88 毫米,在 341 个关键位置对上分别为 0.85 ± 0.74 毫米和 0.82 ± 0.69 毫米。在阈值 τ\tauτ = 1.0 毫米时,nTransCAN 和 softTransCAN 在 PFAP_{FA}PFA 上分别比其他方法中的最佳结果高出 11.01% 和 7.07%,在 PFAKP_{FAK}PFAK 上分别高出 9.67% 和 10.26%。nTransCAN 在整个序列水平上达到最高精度,而端到端学习使 softTransCAN 能够以非关键位置的过度平滑动态路径为代价,优化关键位置的对齐。此外,进行了对比分析,以评估在粗对齐基础上添加细对齐对性能的提升,其中 EM 方法代表仅使用粗对齐的情况。结果表明,细对齐将关键位置的对齐精度从 40.76% 提高到 71.26%。在测试集中的 288 对 SB 中,PBMP_{BM}PBM 达到 90.28% 的准确率。

4.3.2 TransCAN 的学习曲线分析

尽管 softTransCAN 在整个序列水平上的性能略低于 nTransCAN,但在更大的数据集上它有性能提升的潜力。如图 12 所示的学习曲线,跟踪了 TransCAN 和 softTransCAN 在不同数据集规模(40%、50%、60%、70%、80%、90% 以及整个训练集)下,平均对齐误差和在 τ\tauτ = 1.0 毫米时精度的变化。nTransCAN 在使用超过 40% 的数据集后性能达到饱和,而 softTransCAN 仍处于明显的上升阶段。因此,认为 nTransCAN 在当前数据集规模下已接近完全拟合,并预计随着数据规模的增加,softTransCAN 的精度可能在某个转折点超过 nTransCAN。

4.3.3 TransCAN 的消融研究

对 TransCAN 中的关键模块以及轮廓相似性评估损失的影响进行了消融研究。表 2 展示了 TransCAN 消融研究的结果,这里选择 nTransCAN 模式作为参考。所有阈值水平设置为 τ\tauτ = 1.0 毫米。在整个序列水平上,位置编码(包括 BPEG 和 ZZZ)的应用总共将误差降低了 0.14 毫米和 5.03%。此外,使用 SB - 匹配和 BPEG 模块合并分支信息总共将误差降低了 0.15 毫米和 5.11%。SPSP - 注意力主要缓解了模型的过拟合问题,使精度提高了 0.09 毫米和 3.97%。在关键位置水平上,位置编码和分支信息的贡献几乎相同,它们将 PFAKP_{FAK}PFAK 的精度提高了 3.22%,SPSP - 注意力也带来了 1.46% 的提升。TransCAN 的侧支匹配准确率达到 90.28%。值得注意的是,BPEG 对 SB - 匹配结果有显著影响,贡献了 10.19% 的提升,而交叉注意力和 SPSP - 注意力也分别带来了 4.63% 和 2.78% 的增强。

还设计了一个消融实验来确定 TransCAN 中可重复单元 M1M_1M1M2M_2M2 的最佳数量,如图 3(a)和 3(b)所示。分别将它们设置为 1、2、3 和 4 来评估精度变化。结果表明,将 M1M_1M1M2M_2M2 从 1 增加到 2 会显著提高模型精度(图 13)。然而,当它们超过 2 时,精度没有显著提高,因此 M1M_1M1M2M_2M2 都设置为 2。

此外,表 3 展示了 CSA 损失的有效性。自监督机制分别为 nTansCAN 和 softTransCAN 带来了 3.69% 和 1.21% 的精度提升。去除交叉对齐损失后,softTransCAN 使用无监督的 CSA 损失可实现 1.23 毫米的平均误差。CSA 损失的全面实施显著将 softTransCAN 的精度提高了 7.76%。此外,表 4 展示了 soft - DTW 损失中不同 γ\gammaγ 的对比实验结果。较小的 γ\gammaγ 值会导致对对齐路径的更高敏感性,但可能导致梯度计算不稳定。随着 γ\gammaγ 增加,动态路径变得更平滑,向对角线的倾斜变得更加明显。当 γ\gammaγ 超过 0.8 时,它完全退化为 EM 对齐。观察到 softTransCAN 在 γ\gammaγ 设置为 0.2 时平均误差最低。

4.3.4 AutoFOX 的形态学结果

表 5 主要展示了在多中心的两个外部验证集中模型形态学指标的统计结果,且未观察到它们之间有显著的分布差异。在 AutoFOX 融合模型和 CTA 参考模型中总共匹配了 216 个 SBs。图 14 展示了 AutoFOX 获得的重建 SB 开口的细节,图 15 展示了一些融合结果示例。角度指标的平均误差较小,εPBA\varepsilon_{PBA}εPBAεDBA\varepsilon_{DBA}εDBAεBRA\varepsilon_{BRA}εBRA 仅为 2.68 ± 1.78°、8.23 ± 4.12° 和 5.93 ± 3.75°,εBOA\varepsilon_{BOA}εBOAεBMLA\varepsilon_{BMLA}εBMLA 分别为 0.31 ± 0.01 mm2mm^2mm2 和 0.15 ± 0.01 mm2mm^2mm2。这也表明融合模型在冠状动脉血流动力学评估等任务中具有较高的可行性。此外,通过仅纳入图像采集间隔在 3 个月内的患者进行敏感性分析,结果保持一致。具体而言,εPBA\varepsilon_{PBA}εPBAεDBA\varepsilon_{DBA}εDBAεBRA\varepsilon_{BRA}εBRA 分别为 2.61 ± 1.71°、8.27 ± 4.09° 和 5.88 ± 3.70°,而 εBOA\varepsilon_{BOA}εBOAεBMLA\varepsilon_{BMLA}εBMLA 分别为 0.30 ± 0.01 mm2mm^2mm2 和 0.15 ± 0.01 mm2mm^2mm2


实验结果表明,AutoFOX 融合模型与 CTA 参考模型具有较高的形态一致性。与 3D - XA 相比,融合模型在 BOA(rrr = 0.71 对 rrr = 0.52)和 BMLA(rrr = 0.84 对 rrr = 0.60)方面与参考标准值的相关性和一致性显著增强,如图 16 所示。

4.3.5 AutoFOX 的时间成本

表 6 展示了在外部验证集中使用 AutoFOX 的 67 个样本的时间消耗。仅关注管腔融合时,初始重建(IR)是最耗时的过程,因为它包括多个图像和各种对象的分割模型,平均耗时 37.8 秒(范围从 22.6 秒到 49.1 秒)。配准(CR)和融合重建(FR)速度更快,平均分别耗时 3.7 秒(2.7 秒到 6.1 秒)和 2.9 秒(2.2 秒到 4.3 秒)。仅管腔的总时长为 44.4 秒,涉及斑块的融合分别影响 IR 和 FR 过程 16.3 秒和 10.5 秒,总时间增加 26.8 秒。GPU 加速分别应用于 IR 中的分割模型和 CR 中的 TransCAN,在管腔和斑块处理时间上分别节省 27.0 秒和 18.7 秒。

尽管该框架目前的运行速度不符合术中实时使用的要求,但它在术前规划和术后评估中确保了高效率,而不会显著增加整体诊断时间成本。测试环境配备了英特尔® 酷睿 i7 - 11700K @ 3.60 GHz、NVIDIA RTX A4000 和 32 GB 内存。

5. 结论与讨论

本文提出了 AutoFOX,这是一种通过初始重建、配准和融合重建三个过程,实现冠状动脉 X 射线血管造影和 OCT 的全自动跨模态 3D 融合框架。AutoFOX 借助专门设计的多任务模型 TransCAN,克服了现有血管 3D 对齐和融合方法的局限性。AutoFOX 将血管轮廓视为顺序数据,对 3D - XA 进行拉直以去除冗余曲率,并通过 3D 到 1D 的转换减少模型参数。此外,对 SB 管腔的重建算法进行了优化,增强了对分叉病变的评估。

与其他方法相比,TransCAN 展现出最高的对齐精度。TransCAN 的新颖之处在于深度整合了 SB 信息:SB - 匹配子任务增强了 SB 特征的匹配;BPEG 模块提供了 SB 加权的相对位置编码;SPSP - 注意力在有效保持 SB 处信息交互的同时,降低了交叉注意力的计算复杂度。提出并比较了 nTransCAN 和 softTransCAN 两种 TransCAN 模式。前者在整个序列水平上实现了最佳精度,而后者在临床关键位置表现更好,并且在更大的数据集上具有更大的可扩展性。

所提出的 CSA 损失有效地增强了模型的鲁棒性。尽管一些模块仅带来较小的数值改进,但考虑到它们在小病变长度和 SB 开口长度中的比例,这些改进仍具有重要的临床意义。最终,使用配对 CTA 作为参考标准,通过 5 个形态学指标,在独立的多中心数据集上评估了融合模型。观察到 CTA 与 AutoFOX 生成的融合模型之间具有较高的形态一致性,特别是对于具有临床意义的 BOA 和 BMLA。除了在绝对管腔测量中的较小差异外,与 CTA 相关性的提高进一步表明,OCT 的整合增强了融合模型与实际管腔结构的一致性。

本研究的一个主要优势是整个框架的完全自动化,无需人工干预。这得益于 AutoFOX 中专门设计的模块,使其对上游输出的潜在噪声具有鲁棒性。最后,先进的 3D 融合模型在指导 CAD 患者的经皮冠状动脉介入治疗方面具有重要的应用价值,特别是在复杂的分叉病变中。通过增强病变可视化,该技术使心脏病专家在手术过程中能够做出更明智的决策,优化治疗策略并有可能减少并发症。鉴于越来越多的证据支持基于成像的计算生理学评估,OCT 和 XA 的融合可以利用 Auto - FOX 提供的精确几何建模,提高分数流储备(FFR)和内皮剪切应力(ESS)等关键参数的评估准确性。此外,融合的 3D 冠状动脉树也为研究 CAD 发展中的血流动力学机制铺平了道路,有可能揭示疾病进展的新见解,并为更有针对性的治疗干预提供信息。至于 AutoFOX 的分析速度,尽管目前的速度无法满足术中实时要求,但它在术前规划和术后评估中保持了高效率,而不会显著增加整体诊断时间成本。基于 CTA 模型斑块检测性能的进一步提升,未来对斑块分布的定量比较研究值得探讨。

值得注意的是,该框架不限于任何特定的图像内容和模态,相信它可以作为各种 3D 血管状结构(如支气管、胃肠道、肾动脉、脑血管等)融合任务的通用框架,因此有可能扩展到更广泛的临床应用场景。然而,应该注意的是,本研究中的一些超参数是专门针对冠状动脉数据的特点定制的,例如采样点的数量和网络层数,在转移到其他任务时可能并不普遍适用。

声明

本文内容为论文学习收获分享,受限于知识能力,本文对原文的理解可能存在偏差,最终内容以原论文为准。本文信息旨在传播和学术交流,其内容由作者负责,不代表本号观点。文中作品文字、图片等如涉及内容、版权和其他问题,请及时与我们联系,我们将在第一时间回复并处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值