论文信息
题目:Boosting Your Context by Dual Similarity Checkup for In-Context Learning Medical Image Segmentation
通过双重相似性检查提升上下文学习医学图像分割的上下文效果
作者:Jun Gao, Qicheng Lao, Qingbo Kang, Paul Liu, Chenlin Du, Kang Li, Le Zhang
论文创新点
- 双重相似性检查方法:提出了一种双重相似性检查方法,包括支持集检索和支持集增强两个关键步骤。通过评估候选上下文示例与查询图像之间的语义相似性,检索出与查询图像在语义上相似的支持集;进一步通过掩码外观对齐和加权采样策略,增强支持集的掩码外观与目标对象先验的一致性。
- 掩码外观先验估计:开发了一种掩码外观先验估计