TMI‘25 | 通过双重相似性检查提升上下文学习医学图像分割的上下文效果

论文信息

题目:Boosting Your Context by Dual Similarity Checkup for In-Context Learning Medical Image Segmentation
通过双重相似性检查提升上下文学习医学图像分割的上下文效果
作者:Jun Gao, Qicheng Lao, Qingbo Kang, Paul Liu, Chenlin Du, Kang Li, Le Zhang

论文创新点

  1. 双重相似性检查方法:提出了一种双重相似性检查方法,包括支持集检索支持集增强两个关键步骤。通过评估候选上下文示例与查询图像之间的语义相似性,检索出与查询图像在语义上相似的支持集;进一步通过掩码外观对齐和加权采样策略,增强支持集的掩码外观与目标对象先验的一致性。
  2. 掩码外观先验估计:开发了一种掩码外观先验估计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值