论文信息
题目:ConvexAdam: Self-Configuring Dual-Optimization-Based 3D Multitask Medical Image Registration
凸Adam:基于自配置双优化的三维多任务医学图像配准
作者:Hanna Siebert, Christoph Großbröhmer, Lasse Hansen, Mattias P. Heinrich
源码:https://github.com/multimodallearning/convexAdam
论文创新点
- 提出快速且少学习的方法:论文提出一种用于大变形医学图像配准的快速方法ConvexAdam,该方法基于耦合凸优化与基于Adam的实例优化,只需极少学习,便可实现医学图像的有效配准。
- 解耦特