AAAI 2024 | 从解耦特征查询中学习通用医学图像分割

论文信息

题目:Learning Generalized Medical Image Segmentation from Decoupled Feature Queries
从解耦特征查询中学习通用医学图像分割
作者:Qi Bi, Jingjun Yi, Hao Zheng, Wei Ji, Yawen Huang, Yuexiang Li, Yefeng Zheng
源码:https://github.com/BiQiWHU/DFQ

论文创新点

  1. 提出解耦特征查询方案:论文提出从解耦特征查询(DFQ)中学习通用医学图像表示,该方案能解决跨域医学图像的特征不对齐问题,且可无缝集成到Transformer分割模型中,以实现更好的域泛化性能。
  2. 设计松弛深度白化变换:提出一种松弛深度白化变换,以可学习
### 关于2025年AAAI会议中的医学图像论文与主题 #### 医学图像处理技术的发展趋势 近年来,随着人工智能技术的进步,特别是深度学习方法的应用,在医学图像分析领域取得了显著进展。这些进步不仅提高了诊断准确性,还促进了个性化医疗的发展[^1]。 #### 主要研究方向 在即将举行的2025年度美国人工智能协会(AAAI)会议上,预计会有大量关于医学影像的研究成果展示。具体来说: - **疾病检测与分类**:利用卷积神经网络(CNNs)和其他先进的机器学习算法来提高早期癌症筛查等任务的效果。 - **分割与定位**:开发更精确的技术用于自动识别器官边界以及病变区域的位置信息。 - **多模态融合**:探索如何有效地结合不同类型的成像数据(如MRI、CT扫描),从而获得更加全面的理解患者状况的方法。 - **生成对抗网络(GAN)**及其变体被广泛应用于合成高质量的虚拟病例样本或者修复低质量的真实图片。 ```python import tensorflow as tf from tensorflow.keras import layers def create_cnn_model(input_shape=(256, 256, 3)): model = tf.keras.Sequential([ layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape), layers.MaxPooling2D((2, 2)), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dropout(0.5), layers.Dense(num_classes, activation='softmax') ]) return model ``` 此代码片段展示了构建一个简单的CNN模型来进行医学图像分类的一个例子。 #### 数据集和挑战赛 为了推动该领域的进一步发展,许多公开可用的数据集将会成为研究人员关注的重点对象;同时也会有一些针对特定疾病的预测竞赛活动举办,鼓励全球科学家共同解决实际临床问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值