论文信息
题目: Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
域偏移下语义分割的双曲主动学习
作者:Luca Franco, Paolo Mandica, Konstantinos Kallidromitis, Devin Guillory, Yu - Teng Li, Trevor Darrell, Fabio Galasso
论文创新点
- 提出新颖的双曲半径解释:论文创新性地将双曲半径解释为数据稀缺性的指标,这与双曲文献中已知的解释不同。现有最先进的双曲语义分割模型将双曲半径用于表示手动定义的类层次关系,而该论文通过深入分析发现,双曲半径能有效估计数据稀缺性,是估计认知不确定性的关键组成部分。
- 引入认知不确定性的数据获取策略:区分了随机不确定性和认知不确定性ÿ