ICML 2024 | 域偏移下语义分割的双曲主动学习

论文信息

题目: Hyperbolic Active Learning for Semantic Segmentation under Domain Shift
域偏移下语义分割的双曲主动学习
作者:Luca Franco, Paolo Mandica, Konstantinos Kallidromitis, Devin Guillory, Yu - Teng Li, Trevor Darrell, Fabio Galasso

论文创新点

  1. 提出新颖的双曲半径解释:论文创新性地将双曲半径解释为数据稀缺性的指标,这与双曲文献中已知的解释不同。现有最先进的双曲语义分割模型将双曲半径用于表示手动定义的类层次关系,而该论文通过深入分析发现,双曲半径能有效估计数据稀缺性,是估计认知不确定性的关键组成部分。
  2. 引入认知不确定性的数据获取策略:区分了随机不确定性和认知不确定性ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值