多模态融合原来这么好发论文?看完我像被“点醒”,太赞啦!

谷歌大佬Jeff Dean曾表示,他对多模态的发展非常看好。事实也确实如此,尤其多模态融合,已经成了工业界数字化转型的核心技术,在CVPR等顶会也呈持续霸榜状态。

纵观近几年的文章,目前多模态融合主要有两种创新思路:改进类+结合类。改进类比如可解释多模态融合,属于“升级打怪”,目的是让模型性能更强、结果更靠谱。另一种是 “组队开挂”,这块又分为3个层次(任务、方法、模型)。各位如果想快速出成果,不妨从这些角度入手。

为方便大家找参考,我特别整理了117篇多模态融合前沿论文,根据上述创新思路做了区分。同时还准备了许多经典的模型,方便刚入门的同学打基础。另外我还找到了一份多模态代码库,也附上了,用上它搭建模型更省力。

扫码添加小享,回复“多模态融合25” 

免费获取全部论文+经典模型+代码库

改进类

比较火的可解释多模态融合,在原来模型里加个“说明书”,让模型融合文字、图像等数据时,能把决策过程说明白,既提升性能又不“黑箱”。

Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop

方法:论文提出了一种名为TimeXL的框架,用于可解释的多模态时间序列预测。该框架通过结合时间序列编码器和LLM,实现对时间序列和文本数据的融合处理,生成预测结果和基于案例的解释。

创新点:

  • 提出TimeXL框架,融合时间序列与文本数据,通过原型编码器生成初步预测并实现可解释的案例推理。

  • 设计预测、反思、改进三大LLM模块,形成闭环迭代流程,持续优化预测精度与文本质量。

  • 实现AUC提升8.9%,提供人类可读的多模态解释,兼顾预测准确性与可解释性。

结合类

方法优化型

像多模态融合+迁移学习,就是用迁移学习解决数据不足或跨领域适配的难题,让多模态模型能更快适应新场景,提升融合效率。

OGP-Net: Optical Guidance Meets Pixel-Level Contrastive Distillation for Robust Multi-Modal and Missing Modality Segmentation

方法:论文提出OGP-Net,通过多视图对比学习和知识蒸馏,融合RGB和IR图像进行语义分割,同时保留模态共享和特定信息,提升多模态和缺失模态场景下的性能。

创新点:

  • 提出OGP-Net,通过DMC策略,对齐RGB和IR模态的特征,增强模态共享信息。

  • 引入DUR,保留RGB图像中的细节纹理,避免模态特定信息丢失。

  • 设计GSU,自动融合RGB和IR模态信息,无需手动调整,提升模型性能。

扫码添加小享,回复“多模态融合25” 

免费获取全部论文+经典模型+代码库

模型架构型

把多模态融合和热门模型(如Mamba)结合,利用高效建模和处理时序数据的能力,优化多模态数据处理流程,让模型跑得更快、性能更强。

MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion

方法:论文提出MMR-Mamba,通过空间域的TCM模块和频率域的SFF模块融合多模态MRI图像信息,并利用ASFF模块进一步整合,提升MRI图像重建质量。

创新点:

  • 提出TCM模块,通过空间域的信息融合,选择性地将参考模态的特征补充到目标模态中。

  • 设计SFF模块,在频率域中高效整合全局信息,恢复高频信号以重建结构细节。

  • 引入ASFF模块,通过空间域和频率域之间的互补增强,进一步提升特征融合效果。

任务驱动型

比如多模态融合+目标检测,就是把图像、语音等不同类型的数据合在一起处理,让目标检测更准更快,典型场景自动驾驶识别障碍物。

A Transformer-Based Multimodal Object Detection System for Real-World Applications

方法:论文提出FusionSight,通过融合雷达和图像数据,利用ViT提取图像特征,CNN处理雷达数据,并通过FFMT整合特征,实现多模态目标检测和分类,为视障人士提供实时导航辅助。

创新点:

  • 提出FusionSight系统,融合雷达和图像数据,利用ViT和CNN分别提取特征,提升目标检测的准确性。

  • 设计特征融合多模态Transformer,有效整合两种模态的特征,增强模型在复杂环境下的鲁棒性。

  • 实现高精度分类,达到99%的准确率,并将结果转化为可听反馈,为视障人士提供实时导航辅助。

扫码添加小享,回复“多模态融合25” 

免费获取全部论文+经典模型+代码库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值