ByteTrack算法原理及流程

ByteTrack

主要方法:

1 对当前帧中(置信度高于最低阈值的)所有检测框,根据置信度中间阈值分成 高置信度检测框 和 低置信度检测框。(几乎保留所有检测框进行轨迹匹配)

2 对于高置信度的检测框,很容易关联到之前的轨迹中(伪代码17-19行)

​ (2.1)使用当前帧的检测框和上一帧的卡尔曼滤波预测(或估计)结果,使用IOU计算相似度(或者如果有用ReID的话,会计算特征间距离计算相似度)。

​ (2.2)基于相似度采用匈牙利算法进行匹配。

​ (2.3)要保留未匹配到轨迹的高置信度检测框(即当前帧剩的检测框) 和 未匹配到检测框的上一帧存在的轨迹(即上一帧剩的轨迹)。

3 对于低置信度的检测框(伪代码20-21行)

​ (3.1)先与(2.3)中剩的轨迹关联。其实就是当前低置信度的检测框和(2.3)中剩下的轨迹关联。这里值得说明的是,此处关联要使用IOU计算相似度,因为低置信度检测框通常模糊或存在遮挡,此时用ReID并不可靠。

​ (3.2)要保留(3.1)中仍然未匹配到检测框的轨迹

​ (3.3)删除在(3.1)中未匹配到轨迹的低置信度的检测框。认为这些低置信度的检测框不包含目标。

4 对于未匹配到轨迹的高置信度检测框,作为新的轨迹保存。(伪代码23-27)

BYTE伪码图示:

在这里插入图片描述

ref

ref1: https://zhuanlan.zhihu.com/p/613223235

### ByteTrack 算法工作原理详解 #### 1. 概述 ByteTrack 是一个多目标跟踪 (MOT) 算法,其核心在于 BYTE 方法。该方法允许将任意检测算法的结果作为输入来执行跟踪操作,这使得 ByteTrack 在实际应用中更加灵活和简便[^1]。 #### 2. 主要组件 ByteTrack 的实现主要依赖以下几个关键模块: - **检测器**:负责提供每一帧图像中的物体位置信息。 - **特征提取器**:用于获取每个检测框对应的外观描述符。 - **匹配机制**:通过计算代价矩阵并求解指派问题来进行轨迹关联。 - **状态管理**:维护各个目标的状态(激活/失活),处理新出现的目标以及丢失后的重新识别。 #### 3. 匹配过程 在每一步迭代过程中,ByteTrack 需要完成当前时刻检测到的对象与已有轨迹之间的最佳匹配。具体来说,就是构建一个表示候选对象间相似度的代价矩阵 `cost_matrix` ,并通过调用 `lap.lapjv()` 函数寻找最优分配方案[^3]。 ```python import numpy as np from scipy.optimize import linear_sum_assignment as lapjv def match_detections_to_tracks(detections, tracks, thresh): """ 将检测结果与现有轨迹进行匹配 参数: detections: 当前帧的所有检测框列表 tracks: 前一帧已有的活动轨迹集合 thresh: 成本阈值 返回: matches: 对应关系数组 """ if not detections or not tracks: return [] # 计算代价矩阵 cost_matrix = compute_cost_matrix(detections, tracks) # 使用匈牙利算法解决线性分配问题 row_ind, col_ind = lapjv(-np.array(cost_matrix)) # 获取满足条件的成本小于等于设定阈值的索引对 matches = [(row_ind[i], i) for i in range(len(row_ind)) if cost_matrix[row_ind[i]][i] <= thresh] return matches ``` 上述代码片段展示了如何利用 `scipy.optimize.linear_sum_assignment` 来代替原始论文提到的 `lap.lapjv` 实现相同功能。这里采用负数形式是因为默认情况下此函数找的是最大权匹配而不是最小化成本。 #### 4. 轨迹更新逻辑 一旦完成了匹配步骤之后,就需要依据得到的结果调整各条轨迹的状态。对于成功找到对应项的老轨迹而言,则继续沿用之前的 ID;而对于未能被正确关联上的情况则需创建新的轨迹实例或将旧有未确认轨迹标记为失效等待进一步验证。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃油淋鸡的莫何

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值