决策树是一种用于分类和回归的机器学习模型。它通过学习一系列的决策规则将数据分成不同的类别或预测数值。决策树在构建时依赖于属性选择度量,如信息增益、基尼系数等。
在Python中,我们可以使用scikit-learn
库来快速构建和使用决策树模型。下面是一个基于决策树的分类和回归的案例分析。
案例分析:决策树分类
我们将使用scikit-learn
的决策树分类器对鸢尾花数据集进行分类。鸢尾花数据集包含了三种鸢尾花的四个特征(花萼和花瓣的长度和宽度),并需要根据这些特征对鸢尾花的种类进行分类。
Python 实现:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
from sklearn import tree
# 加载鸢尾花数据集
iris = datasets.load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建决策树分类器并训练
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# 预测测试集结果
y_pred = clf.predict(X_test)
# 输出混淆矩阵和分类报告
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
# 绘制决策树
plt.figure(figsize=(12, 8))
tree.plot_tree(clf, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()
解释:
DecisionTreeClassifier
:用于创建决策树分类模型。plot_tree
:绘制决策树,展示决策路径。
案例分析:决策树回归
决策树也可以用于回归问题。在这个案例中,我们将使用波士顿房价数据集来预测房屋的价格。
Python 实现:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
# 加载波士顿房价数据集
boston = datasets.load_boston()
X, y = boston.data, boston.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建决策树回归模型并训练
regressor = DecisionTreeRegressor(random_state=42)
regressor.fit(X_train, y_train)
# 预测测试集结果
y_pred = regressor.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")
# 绘制特征重要性
plt.figure(figsize=(8, 6))
plt.barh(boston.feature_names, regressor.feature_importances_)
plt.xlabel("Feature Importance")
plt.ylabel("Feature Name")
plt.title("Feature Importance in Decision Tree Regression")
plt.show()
解释:
Deci