使用Python实现层次聚类与散点图绘制

- 引言
- 文章目的
- 层次聚类步骤
- 层次聚类Python代码
- 散点图绘制
- 结果分析与可视化

#### 引言

在数据分析中,聚类是一种常用的无监督学习方法,它可以帮助我们发现数据内在的结构。层次聚类(Hierarchical Clustering)是聚类算法中的一种,它不需要预先指定聚类的数量,而是生成一个由层次结构组成的聚类树(称为树状图或Dendrogram)。本文将介绍如何使用Python实现层次聚类,并绘制相应的散点图。

#### 文章目的

本篇文章的目的是向读者展示如何使用Python进行层次聚类分析,并通过散点图直观地展示聚类结果。

#### 层次聚类步骤

1. 数据导入
2. 数据标准化
3. 距离计算与链接方法选择
4. 构建聚类树
5. 确定聚类数
6. 绘制散点图

#### 层次聚类Python代码```python

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler

# 导入数据
df_raw = pd.read_csv('data.csv')

# 数据标准化
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df_raw)

# 计算距离矩阵
distance_matrix = np.linalg.norm(df_scaled[:, np.newaxis, :] - df_scaled[np.newaxis, :, :], axis=2)

# 选择链接方法并构建聚类树
linkage_matrix = np.linkage(distance_matrix, method='ward')

# 使用聚合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wh3933

你的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值