Python:Pandas总结

本文详细介绍使用Pandas库进行数据处理的方法,包括数据导入、数据表创建、信息查看、数据清洗、预处理、数据提取、筛选、汇总、统计及输出等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、生成数据表

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as np 
import pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv(‘name.csv’,header=1)) 
df = pd.DataFrame(pd.read_excel(‘name.xlsx’))

3、用pandas创建数据表:

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], 
 "date":pd.date_range('20130102', periods=6),
  "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
 "age":[23,44,54,32,34,32],
 "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
  "price":[1200,np.nan,2133,5433,np.nan,4432]},
  columns =['id','date','city','category','age','price'])

二、数据表信息查看

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、每一列数据的格式:

df.dtypes

4、某一列格式:

df[‘B’].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df.isnull()

7、查看某一列的唯一值:

df[‘B’].unique()

8、查看数据表的值:

df.values

9、查看列名称:

df.columns

10、查看前10行数据、后10行数据:

df.head() #默认前10行数据 
df.tail() #默认后10 行数据

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的均值对NA进行填充:

df[‘prince’].fillna(df[‘prince’].mean())

3、清楚city字段的字符空格:

df[‘city’]=df[‘city’].map(str.strip)

4、大小写转换:

df[‘city’]=df[‘city’]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JackHCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值