矩阵快速幂求线性常系数递推

矩阵快速幂是一种高效解决线性常系数递推问题的方法,例如斐波那契数列。通过将递推关系转化为矩阵乘法,可以将时间复杂度从线性降低到对数级别。文章介绍了矩阵乘法原理、线性常系数递推的概念,并详细解释了如何构建转移矩阵,以及如何应用矩阵快速幂算法实现高效的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵快速幂求线性常系数递推

这个东西十分好用,但是搞懂这个需要先知道两个要点

——矩阵乘法

——常系数递推

矩阵乘法

我们有两个矩阵

X=213101343Y=112110X=[213104313]Y=[111−120]

然后我们定义一个新矩阵 Z , Z=X×YZ=X×Y

其中X为a行b列,Y必须为b行c列。

那么对于矩阵中每一个元素Zij=bk=1Xik×YkjZij=∑k=1bXik×Ykj

而Z本身就是一个a*c的矩阵。

Z=21+11+3211+01+4131+11+3221+1(1)+3011+0(1)+4031+1(1)+30Z=[2∗1+1∗1+3∗22∗1+1∗(−1)+3∗01∗1+0∗1+4∗11∗1+0∗(−1)+4∗03∗1+1∗1+3∗23∗1+1∗(−1)+3∗0]

于是我们就做完了一次矩阵乘法。

目前貌似算矩阵乘法只能枚举i,j,k,时间复杂度为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值