《论文阅读》Optimizing RGB-D Fusion for Accurate 6DoF Pose Estimation

留个笔记自用

Optimizing RGB-D Fusion for Accurate 6DoF Pose Estimation

做什么

Monocular Visual Odometry单目视觉里程计
在这里插入图片描述
相机在运动过程中连续两帧之间会存在overlap,即会同时观测到三维世界中的某些场景以及特征点。而这些场景特征点会投射到2D图片上,通过图片的对齐或者特征的匹配,可以找到前后图片上特点或patch的对应关系。利用相机的成像几何模型(包括相机参数)以及约束,可以求出两帧之间的运动信息(旋转矩阵R和平移t)。这样我们就可以得到一系列的相机相对变化矩阵,从而可以推出相机的姿态信息。

做了什么

在这里插入图片描述
这里的任务做的是一个6自由度的姿态回归,当然也可以理解成为一个视觉里程计的回归任务,做法是用RGB图片获得2D精度,再辅助以深度图的RGBD系统来强化3D深度信息。

怎么做

在这里插入图片描述
整体框架的输入是2D图片IRGB+深度图Idepth,输出坐标系中相机坐标系的相对位姿转换,也就是常见的平移t∈R3和旋转R∈SO(3)组成的位姿转换矩阵T∈SE(3)
整体流程是通过2D图片得到2D关键点,用深度图像反投影这些关键点,以获得对象相机和对象模型之间的三维-三维对应关系,先用RANSAC进行位姿初始化,然后对6Dpose进行refine
按照流程来,首先是2D图像的关键点检测
在这里插入图片描述
这里使用的baseline是论文《Estimating 6D pose from localizing designated surface keypoints》
在这里插入图片描述
这个方法用resnet101作为base,输出一个heatmap也就是热力图,这个热力图上高概率的点就可视为关键点,然后用最简单的loss进行训练
在这里插入图片描述
至此,就通过一张2D图得到了这个2D图上的关键点
然后就是用反投影2D关键点往深度图上
在这里插入图片描述

在这里插入图片描述
这里的P就是点坐标(x,y,z),(u,v)是2D坐标,d是这个点的深度值,这个是输入的深度图给的数据,c和f是相机的横纵主点和焦距,这些是相机的内在参数
至此得到了一个由2D关键点投影得到的深度关键点,也就是一个3D关键点
接下来是将这些3D关键点和对象关键点进行对应,以获得对象相机和对象模型之间的三维-三维对应关系
在这里插入图片描述
需要得到这个物体的3D关键点,为了后面这两者做一个对应,基本上都用的FPS来做
在这里插入图片描述
而这里采用的方法是新提出的一个叫Surfels的方法,从图上可以得出这种方法更倾向于sample在平滑表面的点
得到3D之间的对应点后就可以用RANSAC来初始化该物体的6D位姿转换了
在这里插入图片描述
最后是再利用深度图对这个位姿进行一个refine
在这里插入图片描述
这里设计的过程是一个迭代的过程,提出了一种种融合边缘约束精度和深度信息的鲁棒精确细化方法,也就是图上的,通过深度图和对象图片的edge估计来进行初始化位姿的强化,既把哦哦正了深度误差,也保证了平面精度,这里就是用两个约束来进行的,一个边缘约束,一个深度约束
首先是边缘约束的设计,对于初始预测姿态,可以提取感兴趣区域内的图像边缘得到edge image
在这里插入图片描述
这个现有的做法很多很多,这里用的是一个叫directional Chamfer方向倒角匹配的方法进行边缘检测,定义约束为
在这里插入图片描述
这里Xi表示物体的三维轮廓,xi和ni分别表示的是图像的边缘和法向量,π是一个投影函数,3D至2D的,ρ是一个除异常的函数,简单理解下这个约束,这里的意思就是最小化点到平面距离,目的就是为了在描绘轮廓的基础上更好地反应边缘点
然后是深度约束,这个是为了更好的估计点深度
在这里插入图片描述
这里的Yj是模型上采样的3D顶点,[ . ]Z是抽取三维点中的z轴数据,也就是深度数据,ρ( . )是Geman-McClure函数,跟前面的那个一样是一个除异常的函数,π也跟上面同样
简单理解下,就是计算预测的和测量的三维点之间的误差,最小化这个深度误差
然后将两个约束融合进行优化
在这里插入图片描述
在这里插入图片描述

总结

1.展现了一种很好的结合RGB和D的做法,使用2D关键点和深度图来进行对应,不知道能不能采用2D和3D点云数据对应的方法,做法也可以差不多,一个提供深度信息一个提供语义信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值