【py数据分析】01 - anaconda工具
文章目录
工欲善其事,必先利其器
一:anaconda的介绍
anaconda 是一个开源的 Python 和R 语言的发行版本,主要用于数据科学、机器学习和科学计算。它包含了大量的科学计算库和工具,并且提供了一个方便的环境管理工具,使得用户可以轻松地创建、管理和切换不同的 Python 环境
anaconda可以方便的切换python环境,每个环境包与包的版本不冲突,以及可以很方便的导入与导出包
主要特点如下:
- Anaconda 使用
conda
作为包管理工具,可以方便地安装、更新和删除 Python 包 - 支持多种操作系统和平台(macos, windows, linux)
- Anaconda 允许用户创建独立的 Python 环境,每个环境可以有不同的 Python 版本和包依赖。
- 使用
conda env
命令可以轻松创建、激活、删除和管理环境。 - Anaconda 提供了 Jupyter Notebook 和 JupyterLab,这些工具非常适合数据分析和可视化
- 还集成了 Spyder,一个专门为科学计算设计的 IDE
- Anaconda 发行版预装了大量的科学计算库,如 NumPy、Pandas、Matplotlib、SciPy、Scikit-learn 等。
- 还包括一些常用的数据科学工具,如 TensorFlow、PyTorch 等
- Anaconda 有一个活跃的社区,用户可以在社区中获取帮助、分享经验和学习资源。
二:anaconda的下载和安装
1:anaconda的下载
官网下载,因为官网在国外,非常的慢,不推荐(当然如果会翻墙也可以)
选择你对应的系统,然后进行下载就可以了
国内镜像源下载 -> 快速,推荐
这里演示的是下载这个版本的exe,大小大概是900M
2:anaconda的安装
下载完成后,只需要一步一步按照提示安装即可,以下说明安装过程中4个需要特别注意的步骤
- 在选择安装用户的时候,一定要选择
All Users
, 如果选择Just Me
后面使用可能会报错 - 安装位置建议不要放在c盘,因为anaconda比较大,后面要存放乱七八糟的内容也比较多
- 那三个都勾上(创建开始菜单, base环境以python3.12创建, 清除包缓存)
- 最后一步的两个勾取消,不要框选。点击【Finish】
三:anaconda的配置
1:环境变量添加
在系统环境变量中的Path中添加对应的anaconda环境变量(根据自己安装的位置选择)
- E:\anaconda3
- E:\anaconda3\Scripts
- E:\anaconda3\Library\bin
- E:\anaconda3\Library\mingw-w64\bin
2:版本信息查看
在windows菜单栏搜索Anaconda,以管理员身份打开anaconda prompt
然后输入命令conda --version
查看conda版本,从而可以检验是否安装成功
3:默认环境保存路径和下载源修改
通过输入命令conda info
查看信息可以得知:
所以下面要进行修改
1️⃣ 在C盘-用户-用户名
,找到.condarc
,如果找不到打开anaconda prompt输入以下命令
conda config --set show_channel_urls yes
然后就能找到了,打开后将其中的内容全部去掉,然后写上自定义的目录,例如:(定义成为你自己的)
envs_dirs:
- E:\anacondaEnv\envs
pkgs_dirs:
- E:\anacondaEnv\pkgs
然后保存退出就就可以了(⚠️ 注意在属性中控制这两个路径User用户可以完全控制,可以在属性 -> 安全中修改)
2️⃣ 在以管理员身份打开anaconda prompt
,然后准备使用清华镜像源,输入下面三行命令
# 添加清华源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
# 添加阿里云镜像源
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/free/
conda config --add channels https://mirrors.aliyun.com/anaconda/pkgs/main/
# 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
# (可选)设置搜索时显示通道地址
conda config --set show_channel_urls yes
再次conda info
查看信息就会发现已经修改成功了
4:配置pip下载源
因为pip install默认是使用国外的源站,这里配置成为国内的,方法如下
windows下,在user目录中创建一个pip文件夹,如下图
在pip文件夹中新建文件pip.ini
,内容如下
防止一个镜像失效,这里设置了多个镜像,你也可以添加上面列出的其它镜像
[global]
timeout=40
index-url=http://mirrors.aliyun.com/pypi/simple/
extra-index-url=
https://pypi.tuna.tsinghua.edu.cn/simple/
http://pypi.douban.com/simple/
http://pypi.mirrors.ustc.edu.cn/simple/
[install]
trusted-host=
pypi.tuna.tsinghua.edu.cn
mirrors.aliyun.com
pypi.douban.com
pypi.mirrors.ustc.edu.cn
将配置添加到环境变量path中
如果你是linux系统,可以这么配置
在主目录下创建 .pip 文件夹,并在该文件夹内创建 pip.conf 文件
cd ~/
mkdir .pip
cd .pip
touch pip.conf
在 pip.conf 文件中加入以下内容:
[global]
index-url=https://pypi.tuna.tsinghua.edu.cn/simple
[install]
trusted-host=pypi.tuna.tsinghua.edu.cn
disable-pip-version-check = true
timeout = 6000
四:anaconda环境管理
anaconda的环境管理分成图形界面管理和命令行管理
1:图形界面管理
这里具有对虚拟环境的各种管理操作,以及对各种包的管理操作。图形界面操作比较简单,界面也挺不错的,但是容易卡
2:命令行管理(重点)
管理员(有的人不用也行)方式进入Anaconda prompt
后,进入base环境,即可进行命令行操作
2.1:虚拟环境的管理
1️⃣ 创建虚拟环境
# 可以指定python的版本和要安装的包
conda create -n env_name python=version package_names
# 例如,想要下载一个3.10.0
conda create -n env-3-10 python=3.10.0
2️⃣ 查看虚拟环境列表
conda env list
3️⃣ 激活虚拟环境
conda activate env_name
4️⃣ 退出当前的虚拟环境
conda deactivate
5️⃣ 删除虚拟环境
conda remove -n env_name --all
2.2:包的管理
包的管理有两种方式:conda & pip
pip在任何环境中安装python包;conda在conda环境中安装任何包
在Anaconda中,可以理解为:conda ≈ pip(python包管理) + virtualenv(虚拟环境) + 非python依赖包管理
1️⃣ 给虚拟环境安装对应的依赖包之前,需要先激活改虚拟环境
conda activate env_name
2️⃣ 安装包
# 可以指定包的版本,在包名后面街上==版本号
# 例如,pip install opencv-python==3.4.2.16
conda install package_name
pip install package_name
3️⃣ 列出所有的包
conda list
pip list
4️⃣ 更新包
conda update package_name
conda update --all # 一次全部更新
pip install --upgrade package_name
5️⃣ 删除包
conda remove package_name
pip uninstall package_name
6️⃣ 查找指定的包
conda search keyword
2.3:环境的导入和导出
conda 和 pip 都可以导入导出 requirements.txt
文件,但是 conda 导出的文件比 pip 更详细一点
# 导出环境文件 requirements.txt 文件
pip freeze > requirements.txt
# 导出环境文件 requirements.txt 文件 -e
conda list -e > requirements.txt
下面是导入环境
pip install -r requirements.txt
# 下面这种方式,遇到安装不上某个包时就会停止整个安装过程
conda install --yes --file requirements.txt
# 解决方法如下:
FOR /F "delims=~" %f in (requirements.txt) DO conda install --yes "%f"
下面是yaml操作
# 导出环境文件 environment.yml 文件
conda env export > environment.yml
# 默认安装在conda的环境路径 -f
conda env create -f environment.yml
# 指定安装路径 -p
conda env create -f environment.yml -p /user/username/anaconda3/envs/env_name
五:Pycharm的接入
1:对于新建的工程
可以选择创建一个新的虚拟环境 ->
- 选择创建虚拟环境的工具为Conda
- 选择虚拟环境安装的位置:最好和命令行创建的虚拟环境在一个大文件夹下,方便管理
- 选择创建的虚拟环境中使用python版本
- 选择conda 执行器 -> 在Scripts\conda.exe
create一段时间之后,就会创建成功,同时会在指定的路径下找到对应的虚拟环境
如果你使用命令行已经安装了一个虚拟环境并且现在新建的工程使用,可以这样
选择现存的解释器,然后选择anaconda中的conda.exe,此时解释器会使用conda中选择的虚拟环境中的python环境
2:对于一个已经存在的项目
如果想要使用conda作为虚拟环境,可以进入setting中的python interpreter
中修改
六:jupyter notebook
jupyter notebook:一款编程/文档/笔记/展示软件
upyter Notebook 是一个基于 Web 的交互式计算环境,支持多种编程语言,包括 Python、R、Julia 等。它的主要功能是将代码、文本、数学方程式、可视化和其他相关元素组合在一起,创建一个动态文档,用于数据分析、机器学习、科学计算和数据可视化等方面。Jupyter Notebook 提供了一个交互式的界面,使用户能够以增量和可视化的方式构建和执行代码,同时支持 Markdown 格式的文本和 LaTeX 数学符号
1:安装jupyter
如果你要使用图形界面管理安装(选择指定的虚拟环境,然后再jupyter中选择launch即可)
但是这样对于电脑性能不是很好的非常卡,不推荐
推荐使用pip安装,因为上面已经对pip使用国内镜像源了
先选择要安装的虚拟环境,然后pip install jupyter notebook
等比较长的时间,然后就会看到安装了一大堆东西
2:使用jupyter
再命令行中输入jupyter notebook
,会看到如下的内容
打开上面提供的网址,就是Or copy and paste one of these URLs
下面的其中一个
会出现下面的内容,然后new -> Notebook
就可以创建对应的notebook了
然后就可以测试使用了
当然启动之后也可以在对应的python工程中通过创建xxx.ipynb
的文件,使用jupyter notebook