Halcon机器视觉实战--分水岭分割+距离变换实现粘连物体图像分割

本文介绍了Halcon中的分水岭算法,用于解决机器视觉中粘连物体图像的分割问题。通过将图像视为高度图,找到局部最小值点并进行分水岭分割,以防止过度分割。同时,讨论了距离变换的不同类型,如欧式、城市街区和棋盘距离,并阐述其在简化分水岭算法复杂度上的作用。最后,给出了实例代码和图像效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分水岭的原理

把图像的灰度看作高度图,图像中每个像素点的灰度值看作该点的高度,高灰度值代表山脉,低灰度值代表盆地,每个局部最小值及其周围区域称为集水盆,而集水盆的边界则形成分水岭。
在这里插入图片描述

分水岭算法的步骤

1.彩色图像转化成单通道灰度图
2.求梯度图
3.在梯度图的基础上进行分水岭算法,求取分区域的边缘线。

局部最小值点:

对应的是一个盆地的最小值,当我们在盆地里面滴一滴水的时候,由于重力作用,水最终会汇聚到该点。
在这里插入图片描述

盆地的其他位置点:

该位置滴的水滴会汇聚到局部最小点。

在盆地的最小值点,打一个洞,然后往盆地里面注水,并阻止两个盆地的水汇集,我们会在两个盆地的水汇集的时刻,在交接的边缘线上(即分水岭),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手写不期而遇

感谢你的打赏,也欢迎一起学习

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值