conda虚拟环境中安装cuda和cudnn,再也不用头疼版本号的问题了

本文介绍了如何在conda虚拟环境中安装和切换不同版本的CUDA和cuDNN,以便于深度学习项目的灵活性。首先,通过conda搜索找到支持的CUDA版本并下载,然后在指定环境中安装。接着,查找对应CUDA版本的cuDNN并下载安装。最后,通过安装与CUDA版本匹配的PyTorch来验证安装成功,并展示如何检查CUDA和cuDNN的版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景(为什么)

深度学习用显卡训练的时候,需要安装与显卡对应的cuda和cudnn,这样才可以用显卡进行训练。

但是github上不同的项目所支持的pytorch版本是不一样的,而pytorch版本和cuda版本之间又是互相依赖的,所以如果可以灵活地在不同cuda版本间切换将是非常方便的。anaconda就可以实现这个功能。

我们可以在conda创建的不同虚拟环境中安装不同的cuda和cudnn版本,以此来实现不同cuda版本间的切换。

具体步骤

查看conda支持的cuda版本

注意

  • 如果是第一次安装anaconda,需要先修改镜像
  • 要先使用conda activate name命令把conda环境激活到你想要安装的那个环境。
conda search cudatoolkit --info

执行上述命令后,会显示出源内所有的cuda版本,以及下载地址,如图所示
在这里插入图片描述

下载cuda

找到自己想要的cuda版本后,先把cuda下载到本地。首先复制url字段里的下载链接,然后用命令cd到想要下载的目录,执行如下代码下载

wget 你刚刚复制的链接地址

安装cuda

执行如下命令进行安装,因为是通过本地安装的,所以需要写明本地包的路径

# 然后安装本地包
conda install --use-local 本地cuda包所在的路径

查看cuda对应的cudnn版本

使用如下命令查看conda支持的cudnn版本,注意cudnn的版本一定要和刚刚下载的cuda版本对应

conda search cudnn --info

执行后的结果如图所示,图中标出了cudnn所对应的cuda版本号位置
在这里插入图片描述

下载cudnn版本

还是复制你想要版本的cudnn的下载地址,使用wget 链接地址进行下载

安装cudnn

conda install --use-local 本地cudnn包所在的路径

测试安装是否成功

在虚拟环境中安装完cuda和cudnn想要测试是否安装成功,不能使用nvcc -V命令测试,需要在虚拟环境中安装pytorch包进行测试

安装pytorch

首先安装与cuda相匹配的pytorch和torchvision包,可以去pytorch官网查询。

因为我的cuda版本是11.0,支持的pytorch版本为1.7.1,所以我安装的是这俩个,你可以根据你的需要安装。

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0

测试cuda版本

装好pytorch后,命令行输入python,进入python的命令行,导入torch包
查询cuda版本

print(torch.version.cuda)

查询cudnn版本

print(torch.backends.cudnn.version())

如图所示
在这里插入图片描述
可以看到版本号是我们想要的,成功!!!

参考链接

conda虚拟环境中安装cuda和cudnn
python查看cuda版本号

评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值