风控算法(一)——数据测试

下面的内容都是针对数据源测试的一些可能得问题:

1、请描述你在开发和执行数据测试流程时的具体步骤。

确定样本(对齐样本与时间,去除假样本)——确定特征(确认目前特征)——数据信息(返回的数据字典、收费方式、底层数据:特征、分数)——数据清洗(缺失值替换)——数据训练形成报告。

2、如何确定数据产品在风险模型中的潜在价值和适用性的?

AUC、IV、相关性、性价比、数据产品背景和领域

3、请详细描述你负责的10+数据源上线解析的过程。

根据三方数据公司返回的数据产品报表,自动集成至公司代码库。

4、在模型运行过程中,你进行了哪些监控和优化工作?

  • 建立dashbord看板,监控不同数据源的数据缺失分布
  • 编写监控代码,在linux上自动执行任务,定期更新报告

5、如何评估模型的效果和准确性?

线上效果与线下效果一致评估


 6、在评估过程中,你发现了哪些可以改进的地方?是如何进行优化的?

网络图展示各个数据产品之间的相关性,非线性相关去看相关性。

 7、请详细描述你在评估这些变量在优质、中间、次级客群上的识别效果时的具体方法。

在数据测试的时候,主要是利用mob3_ever10去看数据的效果,此时是不会划分客群的。这个时候其实主要还是根据违约风险去看数据源的优劣的。真的付费接入数据之后一般会选择贷前、贷中建立的特征以及不同客群使用的模型是不一致的。而且还是要看分箱差异性的。

8、贷前贷中的标签模型差异

  • 贷前模型:标签主要基于借款人的还款表现,如违约、逾期等。

  • 贷中模型:标签主要基于借款人在贷款期间的行为变化,如行为评分、滚动率等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值