MnasNet架构解析与复现-神经架构搜索
参考论文:MnasNet: Platform-Aware Neural Architecture Search for Mobile
看这篇论文之前需要先去看MobileNetV1和MobileNetV2,因为里面用到了深度可分离卷积和逆残差结构。
1、摘要
为移动设备设计卷积神经网络 (CNN) 具有挑战性,因为移动模型需要小而快,但仍要准确。尽管在所有维度上都致力于设计和改进移动 CNN,但当需要考虑如此多的架构可能性时,很难手动平衡这些权衡。在本文中,我们提出了一种自动移动神经架构搜索 (MNAS) 方法,该方法明确地将模型延迟纳入主要目标,以便搜索可以识别出在准确性和延迟之间取得良好折衷的模型。与之前的工作不同,延迟是通过另一个通常不准确的代理(例如 FLOPS)来考虑的,我们的方法通过在手机上执行模型来直接测量现实世界的推理延迟。为了进一步在灵活性和搜索空间大小之间取得适当的平衡,我们提出了一种新颖的分解层次搜索空间,它鼓励整个网络的层多样性。实验结果表明,我们的方法在多个视觉任务中始终优于最先进的移动 CNN 模型。在 ImageNet 分类任务中,我们的 MnasNet 在 Pixel 手机上实现了 75.2% 的 top-1 准确率和 78 毫秒的延迟,比 MobileNetV2 [29] 快 1.8倍,准确率高 0.5%,比 NASNet [36] 快 2.3倍, 准确度高