MnasNet架构解析与复现-神经架构搜索

26 篇文章 ¥19.90 ¥99.00
本文深入探讨了MnasNet,一种针对移动设备的自动神经架构搜索方法。MnasNet通过多目标优化兼顾速度和精度,使用分层搜索空间实现模型多样性。与MobileNetV2相比,MnasNet在保持较低延迟的同时,提高了准确率。文章详细介绍了MnasNet的关键组件,包括深度可分离卷积、SE注意力机制,并提供了代码复现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  参考论文:MnasNet: Platform-Aware Neural Architecture Search for Mobile

  看这篇论文之前需要先去看MobileNetV1和MobileNetV2,因为里面用到了深度可分离卷积和逆残差结构。

1、摘要

  为移动设备设计卷积神经网络 (CNN) 具有挑战性,因为移动模型需要小而快,但仍要准确。尽管在所有维度上都致力于设计和改进移动 CNN,但当需要考虑如此多的架构可能性时,很难手动平衡这些权衡。在本文中,我们提出了一种自动移动神经架构搜索 (MNAS) 方法,该方法明确地将模型延迟纳入主要目标,以便搜索可以识别出在准确性和延迟之间取得良好折衷的模型。与之前的工作不同,延迟是通过另一个通常不准确的代理(例如 FLOPS)来考虑的,我们的方法通过在手机上执行模型来直接测量现实世界的推理延迟。为了进一步在灵活性和搜索空间大小之间取得适当的平衡,我们提出了一种新颖的分解层次搜索空间,它鼓励整个网络的层多样性。实验结果表明,我们的方法在多个视觉任务中始终优于最先进的移动 CNN 模型。在 ImageNet 分类任务中,我们的 MnasNet 在 Pixel 手机上实现了 75.2% 的 top-1 准确率和 78 毫秒的延迟,比 MobileNetV2 [29] 快 1.8倍,准确率高 0.5%,比 NASNet [36] 快 2.3倍, 准确度高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别团等shy哥发育

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值